Electronic Supplementary Information

Fascinating 3D energetic $[Ag_2(N_5)_2(EDA)]_n$: filling the ethylenediamine molecules into $[Ag(N_5)]_n$ framework

Xiaopeng Zhang[‡],^a Tianyang Hou[‡],^a Qiuhan Lin,^a Pengcheng Wang,^a Dongxue Li,^b

Yuangang Xu^{*a} and Ming Lu^{*a}

^a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.

^b China National Quality Supervision Testing Center for Industrial Explosive Materials,

Xiaolingwei 200, Nanjing 210094, Jiangsu, China.

E-mail: yuangangxu@163.com; luming@njust.edu.cn

Table of Contents

1.	Crystal data and structure refinement details of $[Ag_2(N_5)_2(EDA)]_n$, $[Ag(N_5)]_n$ and $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$	S3
2.	Single-crystal X-ray diffraction analysis of $[Ag_2(N_5)_2(EDA)]_n$	S4
3.	Single-crystal X-ray diffraction analysis of $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$	S 6
4.	The noncovalent interactions study	S10
5.	IR spectrum	S12
6.	TG curve	S12
	Reference	S13

 Crystal data and structure refinement details of [Ag₂(N₅)₂(EDA)]_n, [Ag(N₅)]_n and [Ag₃(N₅)₄]_n·n[Ag(NH₃)₂]

Table S1. Crystal data and structure refinement details of $[Ag_2(N_5)_2(EDA)]_n$, $[Ag(N_5)]_n$ and $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

	$[Ag_2(N_5)_2(EDA)]_n$	$[\mathrm{Ag}_3(\mathrm{N}_5)_4]_n \cdot n[\mathrm{Ag}(\mathrm{NH}_3)_2]$	$[\mathrm{Ag}(\mathrm{N}_5)]_n^1$
CCDC	2124736	1884910	18168458
Empirical formula	CH ₄ AgN ₆	$Ag_4H_6N_{22}$	Ag ₁₆ N ₈₀
Formula weight	207.97	745.75	2846.72
Temperature	170.0 K	220 K	173 K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	orthorhombic
Space group	P2 ₁ /c	$P2_1/c$	Fddd
Unit cell	a=7.7903(2) Å b=8.9945(3) Å c=8.0367(2) Å	a=9.0932(18) Å b=9.1069(17) Å c=9.8502(19) Å	a=11.904(2) Å b=15.240(3) Å c=17.282(3) Å
dimensions	α=90.00 °	α=90.00 °	α=90.00 °
	β=116.1130(10) °	β=108.847(4) °	β=90.00 °
	γ=90.00 °	γ=90.00 °	γ=90.00 °
Volume	505.65(3) Å ³	772.0(3) Å ³	3135.3(10) Å ³
Z	4	2	2
Density (calculated)	2.732 g·cm ⁻³	3.208 g⋅cm ⁻³	3.015 g·cm ⁻³
Absorption coefficient	3.870 mm ⁻¹	5.046 mm ⁻¹	4.958 mm ⁻¹
F(000)	396.0	696.0	2624.0
Crystal size	0.15 x 0.08 x 0.05 mm ³	0.12 x 0.06 x 0.03 mm ³	0.07 x 0.03 x 0.03 mm ³
Theta range for data collection	7.24 to 55.074 °	4.734 to 54.35°	4.94 to 49.988°
Index ranges	-8≤h≤10, -11≤k≤11, - 10≤l≤9	-11≤h≤11, -11≤k≤11, - 12<=1<=12	_
Reflections collected	5749	6195	688
Independent	1132 [R(int) = 0.0402,	1710 [R(int) = 0.0828,	688 [R(int) = 0,
reflections	R(sigma)=0.0283]	R(sigma)=0.0781]	R(sigma)=0.1548]
Data / restraints / parameters	1132/0/73	1710/0/122	688/30/56
Goodness-of-fit on F ²	1.120	0.971	1.122
Final R indices [I>2sigma(I)]	R1=0.0188, wR ₂ =0.0412	R1=0.0415, wR ₂ =0.0654	R1=0.1063, wR ₂ =0.2723
R indices (all data)	R1=0.0216, wR ₂ =0.0430	R1=0.1100, wR ₂ =0.0840	R1=0.1816,

			wR ₂ =0.2892
Largest diff. peak and hole	0.311 and -0.308 e.Å ⁻³	0.95 and -0.86 e.Å ⁻³	1.64 and -1.77 e.Å ⁻³

2. Single-crystal X-ray diffraction analysis of $[Ag_2(N_5)_2(EDA)]_n$

Table S2. Crystal data, data collection, and refinement for $[Ag_2(N_5)_2(EDA)]_n$

CH ₄ AgN ₆	F(000) = 396
$M_r = 207.97$	$D_{\rm x} = 2.732 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.7903 (2) Å	Cell parameters from 4340 reflections
<i>b</i> = 8.9945 (3) Å	$\theta = 3.6 - 27.5^{\circ}$
c = 8.0367 (2) Å	$\mu = 3.87 \text{ mm}^{-1}$
$\beta = 116.113 \ (1)^{\circ}$	T = 170 K
V = 505.65(3) Å ³	Block, colourless
Z = 4	$0.15 \times 0.08 \times 0.05 \text{ mm}$
D8 VENTURE diffractometer	1051 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.040$
Absorption correction: multi-scan $SADABS2016/2$ (Bruker,2016/2) was used for absorption correction. wR2(int) was 0.0810 before and 0.0542 after correction. The Ratio of minimum to maximum transmission is 0.8128. The $\lambda/2$ correction factor is Not present.	$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.6^{\circ}$
$T_{\min} = 0.754, T_{\max} = 0.928$	$h = -8 \rightarrow 10$
5749 measured reflections	$k = -11 \rightarrow 11$
1132 independent reflections	<i>l</i> = −10→9
Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.019$	H-atom parameters constrained
$wR(F^2) = 0.043$	$w = 1/[\sigma^2(F_o^2) + 0.4594P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.12	$(\Delta/\sigma)_{\rm max} < 0.001$
1132 reflections	$\Delta \lambda_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
73 parameters	$\Delta \lambda_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Agl	0.68902 (3)	0.17021 (2)	0.58482 (2)	0.02381 (8)
N6	0.2354 (3)	0.4808 (2)	0.5357 (3)	0.0256 (4)
N5	0.3148 (3)	0.3813 (2)	0.4706 (3)	0.0227 (4)
N1	0.9749 (3)	0.1918 (2)	0.5794 (3)	0.0192 (4)
H1B	0.982000	0.282982	0.533611	0.023*
H1A	1.068748	0.186747	0.697592	0.023*
N4	0.3431 (3)	0.4920 (2)	0.7161 (3)	0.0230 (4)
N2	0.4705 (3)	0.3311 (2)	0.6109 (3)	0.0218 (4)
N3	0.4886 (3)	0.3997 (2)	0.7628 (3)	0.0230 (4)
C1	1.0105 (4)	0.0772 (3)	0.4673 (3)	0.0199 (5)
H1C	1.141233	0.089316	0.477773	0.024*
H1D	0.918657	0.089459	0.335407	0.024*

Table S3. Fractional atomic coordinates and isotropic or equivalent isotropicdisplacement parameters (Å²) for $[Ag_2(N_5)_2(EDA)]_n$

Table S4. Atomic displacement parameters $(Å^2)$ for $[Ag_2(N_5)_2(EDA)]_n$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
Agl	0.02235 (13)	0.02716 (13)	0.02388 (12)	0.00002 (7)	0.01197 (9)	-0.00276 (8)
N6	0.0219 (11)	0.0266 (11)	0.0245 (11)	0.0034 (9)	0.0069 (9)	0.0004 (9)
N5	0.0182 (10)	0.0270 (11)	0.0186 (10)	0.0003 (8)	0.0041 (8)	-0.0006 (9)
N1	0.0209 (11)	0.0167 (10)	0.0192 (10)	0.0000 (8)	0.0080 (8)	0.0005 (8)
N4	0.0235 (11)	0.0232 (11)	0.0220 (10)	0.0019 (8)	0.0098 (8)	-0.0022 (9)
N2	0.0243 (11)	0.0223 (11)	0.0192 (10)	0.0018 (8)	0.0100 (9)	-0.0006 (8)
N3	0.0233 (11)	0.0258 (11)	0.0177 (10)	0.0046 (9)	0.0068 (9)	0.0011 (9)
C1	0.0227 (13)	0.0187 (12)	0.0206 (12)	0.0004 (9)	0.0117 (10)	0.0018 (10)

Table S5. Geometric parameters (Å, °) for $[Ag_2(N_5)_2(EDA)]_n$

Ag1—N1	2.255 (2)	N1—H1A	0.9100
Ag1—N4 ⁱ	2.355 (2)	N1—C1	1.474 (3)
Ag1—N2	2.313 (2)	N4—N3	1.319 (3)
Ag1—N3 ⁱⁱ	2.444 (2)	N2—N3	1.319 (3)
N6—N5	1.319 (3)	C1—C1 ⁱⁱⁱ	1.520 (4)
N6—N4	1.321 (3)	C1—H1C	0.9900
N5—N2	1.320 (3)	C1—H1D	0.9900
N1—H1B	0.9100		

N1—Ag1—N4 ⁱ	118.24 (7)	N3—N4—Ag1 ^{iv}	124.75 (15)
N1—Ag1—N2	136.08 (7)	N3—N4—N6	108.39 (19)
N1—Ag1—N3 ⁱⁱ	100.25 (7)	N5—N2—Ag1	124.93 (16)
N4 ⁱ —Ag1—N3 ⁱⁱ	109.55 (7)	N3—N2—Ag1	126.40 (16)
N2—Ag1—N4 ⁱ	93.54 (7)	N3—N2—N5	108.34 (19)
N2—Ag1—N3 ⁱⁱ	95.97 (7)	N4—N3—Ag1 ^v	122.14 (15)
N5—N6—N4	107.76 (19)	N4—N3—N2	107.60 (19)
N6—N5—N2	107.9 (2)	N2—N3—Ag1 ^v	128.17 (15)
Ag1—N1—H1B	108.8	N1—C1—C1 ⁱⁱⁱ	110.5 (2)
Ag1—N1—H1A	108.8	N1—C1—H1C	109.6
H1B—N1—H1A	107.7	N1—C1—H1D	109.6
C1—N1—Ag1	113.89 (14)	C1 ⁱⁱⁱ —C1—H1C	109.6
C1—N1—H1B	108.8	C1 ⁱⁱⁱ —C1—H1D	109.6
C1—N1—H1A	108.8	H1C—C1—H1D	108.1
N6—N4—Ag1 ^{iv}	126.26 (15)		

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) x, -y+1/2, z-1/2; (iii) -x+2, -y, -z+1; (iv) -x+1, y+1/2, -z+3/2; (v) x, -y+1/2, z+1/2.

Table S6. Hydrogen bonds (Å, °) for $[Ag_2(N_5)_2(EDA)]_n$

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A…N5	0.91	2.27	3.162(3)	166
N1—H1 <i>B</i> ····N6	0.91	2.62	3.298(3)	132

3. Single-crystal X-ray diffraction analysis of $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

Table S7. Crystal data, data collection, and refinement for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

$0.5(Ag_6N_{40}) \cdot AgH_6N_2$	F(000) = 696
$M_r = 745.75$	$D_{\rm x} = 3.208 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 9.0932 (18) Å	Cell parameters from 2704 reflections
<i>b</i> = 9.1069 (17) Å	$\theta = 2.4-22.3^{\circ}$
c = 9.8502 (19) Å	$\mu = 5.05 \text{ mm}^{-1}$
$\beta = 108.847 \ (4)^{\circ}$	T = 220 K
V = 772.0(3) Å ³	Plate, colourless
Z = 2	$0.12 \times 0.06 \times 0.03 \text{ mm}$
Bruker APEX-II CCD diffractometer	857 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.083$

Absorption correction: multi-scan <i>SADABS2014/5</i> (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.0746 before and 0.0561 after correction. The Ratio of minimum to maximum transmission is 0.9221. The $\lambda/2$ correction factor is 0.00150.	$\theta_{max} = 27.2^\circ, \ \theta_{min} = 2.4^\circ$
$T_{\min} = 0.687, \ T_{\max} = 0.746$	$h = -11 \rightarrow 11$
6195 measured reflections	$k = -11 \rightarrow 11$
1710 independent reflections	$l = -12 \rightarrow 12$
Refinement on F^2	Primary atom site location: dual
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0227P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} < 0.001$
1710 reflections	$\Delta \lambda_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
122 parameters	Δ _{min} = -0.86 e Å ⁻³
0 restraints	

 Table S8. Fractional atomic coordinates and isotropic or equivalent isotropic

displacement parameters (Å²) for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ag1	1.000000	0.500000	0.500000	0.0287 (3)
Ag3	0.500000	1.000000	0.500000	0.0322 (3)
Ag2	0.25565 (9)	0.66969 (6)	0.25037 (11)	0.0317 (2)
N1	0.4871 (8)	0.5383 (7)	0.3416 (8)	0.0231 (17)
N2	0.6261 (8)	0.5879 (7)	0.4086 (8)	0.0239 (18)
N3	0.7248 (8)	0.4807 (7)	0.4176 (8)	0.0246 (17)
N4	0.6469 (7)	0.3632 (7)	0.3540 (8)	0.0244 (18)
N5	0.4956 (9)	0.3979 (8)	0.3050 (9)	0.029 (2)
N6	0.0747 (8)	0.8011 (7)	0.3250 (8)	0.0247 (18)
N7	0.0017 (9)	0.7595 (7)	0.4154 (8)	0.0270 (18)
N8	-0.1077 (8)	0.8574 (7)	0.4089 (9)	0.0291 (19)
N9	-0.1007 (8)	0.9592 (8)	0.3170 (8)	0.0245 (17)
N10	0.0139 (8)	0.9259 (7)	0.2678 (9)	0.0234 (19)
N11	0.6862 (8)	0.8595 (7)	0.6031 (8)	0.0284 (18)
H11A	0.716977	0.811875	0.536911	0.034*
H11B	0.655417	0.793812	0.656721	0.034*
H11C	0.765825	0.912661	0.659913	0.034*

	U^{11}	U ²²	U ³³	U^{12}	U ¹³	U ²³
Ag1	0.0183 (6)	0.0268 (6)	0.0396 (8)	-0.0020 (5)	0.0073 (5)	0.0046 (6)
Ag3	0.0352 (7)	0.0327 (7)	0.0315 (7)	0.0006 (5)	0.0148 (6)	-0.0015 (6)
Ag2	0.0205 (3)	0.0171 (3)	0.0618 (5)	0.0020 (4)	0.0195 (3)	0.0049 (5)
N1	0.020 (4)	0.021 (4)	0.033 (5)	0.003 (3) 0.014 (4)		0.002 (3)
N2	0.017 (4)	0.018 (4)	0.038 (5)	0.003 (3) 0.012 (4)		0.001 (4)
N3	0.022 (4)	0.021 (4)	0.032 (5)	0.003 (3) 0.011 (4)		-0.005 (4)
N4	0.009 (4)	0.023 (4)	0.042 (5)	0.003 (3)	0.011 (4)	0.002 (4)
N5	0.023 (4)	0.020 (4)	0.043 (6)	-0.005 (3)	0.011 (4)	0.006 (4)
N6	0.015 (4)	0.020 (4)	0.040 (5)	0.002 (3) 0.010 (4)		0.006 (4)
N7	0.035 (5)	0.017 (4)	0.033 (5)	0.008 (3)	0.017 (4)	0.011 (4)
N8	0.028 (4)	0.018 (4)	0.046 (5)	0.000 (3)	0.019 (4)	0.008 (4)
N9	0.013 (4)	0.027 (4)	0.037 (5)	0.004 (3)	0.012 (4)	-0.005 (4)
N10	0.020 (4)	0.017 (4)	0.037 (5)	-0.001 (3)	0.015 (4)	0.003 (4)
N11	0.031 (4)	0.021 (4)	0.038 (5)	-0.011 (3)	0.019 (4)	-0.004 (4)

Table S9. Atomic displacement parameters $(Å^2)$ for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

Table S10. Geometric parameters (Å, °) for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

Ag1—N3	2.375 (7)	N1—N5	1.338 (9)
Ag1—N3 ⁱ	2.375 (7)	N2—N3	1.310 (8)
Ag1—N7 ⁱⁱ	2.507 (6)	N3—N4	1.324 (9)
Ag1—N7 ⁱⁱⁱ	2.507 (6)	N4—N5	1.340 (9)
Ag1—N10 ^{iv}	2.686 (8)	N6—N7	1.327 (9)
Ag1—N10 ^v	2.686 (8)	N6—N10	1.309 (9)
Ag3—N11 ^{vi}	2.103 (7)	N7—N8	1.322 (9)
Ag3—N11	2.103 (7)	N8—N9	1.311 (9)
Ag2—N1	2.334 (7)	N9—N10	1.318 (9)
Ag2—N4 ^{vii}	2.353 (7)	N11—H11A	0.9000
Ag2—N6	2.337 (7)	N11—H11B	0.9000
Ag2—N9 ^{viii}	2.345 (7)	N11—H11C	0.9000
N1—N2	1.303 (9)		
N3—Ag1—N3 ⁱ	180.0	N1—N2—N3	107.9 (6)
N3 ⁱ —Ag1—N7 ⁱⁱⁱ	85.7 (2)	N2—N3—Ag1	126.3 (5)
N3—Ag1—N7 ⁱⁱⁱ	94.3 (2)	N2—N3—N4	108.7 (7)
N3 ⁱ —Ag1—N7 ⁱⁱ	94.3 (2)	N4—N3—Ag1	124.4 (5)
N3—Ag1—N7 ⁱⁱ	85.7 (2)	N3—N4—Ag2 ^{iv}	126.4 (5)
N3—Ag1—N10 ^{iv}	86.3 (2)	N3—N4—N5	108.1 (6)

N3 ⁱ —Ag1—N10 ^v	86.3 (2)	N5—N4—Ag2 ^{iv}	120.4 (6)
N3 ⁱ —Ag1—N10 ^{iv}	93.7 (2)	N1—N5—N4	105.7 (7)
N3—Ag1—N10 ^v	93.7 (2)	N7—N6—Ag2	128.4 (5)
N7 ⁱⁱ —Ag1—N7 ⁱⁱⁱ	180.0	N10—N6—Ag2	123.5 (6)
N7 ⁱⁱ —Ag1—N10 ^v	85.1 (2)	N10—N6—N7	107.6 (7)
N7 ⁱⁱⁱ —Ag1—N10 ^v	94.9 (2)	N6—N7—Ag1 ^{ix}	123.4 (5)
N7 ⁱⁱ —Ag1—N10 ^{iv}	94.9 (2)	N8—N7—Ag1 ^{ix}	124.5 (5)
N7 ⁱⁱⁱ —Ag1—N10 ^{iv}	85.1 (2)	N8—N7—N6	107.8 (6)
N10 ^{iv} —Ag1—N10 ^v	180.0	N9—N8—N7	107.9 (7)
N11 ^{vi} —Ag3—N11	180.0	N8—N9—Ag2 ^x	127.9 (5)
N1—Ag2—N4 ^{vii}	97.6 (2)	N8—N9—N10	108.2 (7)
N1—Ag2—N6	141.3 (3)	N10—N9—Ag2 ^x	123.9 (6)
N1—Ag2—N9 ^{viii}	94.3 (3)	N6—N10—N9	108.4 (7)
N6—Ag2—N4 ^{vii}	99.0 (2)	Ag3—N11—H11A	109.5
N6—Ag2—N9 ^{viii}	95.1 (2)	Ag3—N11—H11B	109.5
N9 ^{viii} —Ag2—N4 ^{vii}	139.9 (3)	Ag3—N11—H11C	109.5
N2—N1—Ag2	128.6 (5)	H11A—N11—H11B	109.5
N2—N1—N5	109.7 (6)	H11A—N11—H11C	109.5
N5—N1—Ag2	120.6 (6)	H11B—N11—H11C	109.5
Ag1—N3—N4—Ag2 ^{iv}	-17.3 (10)	N2—N1—N5—N4	0.5 (10)
Ag1—N3—N4—N5	-171.7 (5)	N2—N3—N4—Ag2 ^{iv}	154.0 (6)
Ag1 ^{ix} —N7—N8—N9	-158.3 (5)	N2—N3—N4—N5	-0.4 (10)
Ag2—N1—N2—N3	-168.9 (5)	N3—N4—N5—N1	0.0 (9)
Ag2—N1—N5—N4	169.7 (5)	N5—N1—N2—N3	-0.7 (10)
Ag2 ^{iv} —N4—N5—N1	-156.2 (5)	N6—N7—N8—N9	-0.9 (9)
Ag2—N6—N7—Ag1 ^{ix}	-12.3 (10)	N7—N6—N10—N9	-2.7 (9)
Ag2—N6—N7—N8	-170.1 (6)	N7—N8—N9—Ag2 ^x	-179.5 (6)
Ag2—N6—N10—N9	170.0 (5)	N7—N8—N9—N10	-0.8 (9)
Ag2 ^x —N9—N10—N6	-179.1 (5)	N8—N9—N10—N6	2.2 (9)
N1—N2—N3—Ag1	171.8 (5)	N10—N6—N7—Ag1 ^{ix}	159.9 (5)
N1—N2—N3—N4	0.7 (10)	N10—N6—N7—N8	2.2 (9)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, y-1/2, -z+1/2; (v) x+1, -y+3/2, z+1/2; (vi) -x+1, -y+2, -z+1; (vii) -x+1, y+1/2, -z+1/2; (viii) -x, y-1/2, -z+1/2; (ix) x-1, y, z; (x) -x, y+1/2, -z+1/2.

D—H····A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
N11—H11A…N2	0.90	2.40	3.068 (10)	131
N11—H11A····N8 ⁱⁱⁱ	0.90	2.37	3.081 (10)	136
N11—H11 <i>B</i> ····N5 ⁱⁱ	0.90	2.33	3.164 (9)	155
N11—H11C····N3 ^{xi}	0.90	2.85	3.337 (10)	115
N11—H11C····N10 ^{vi}	0.90	2.40	3.261 (10)	160

Table S11. Hydrogen bonds (Å, °) for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (vi) -x+1, -y+2, -z+1; (xi) x, -y+3/2, z+1/2.

4. The noncovalent interactions study

Fig. S1 Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for $[Ag_2(N_5)_2(EDA)]_n$.

Fig. S2 Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for $[Ag(N_5)]_n$.

Fig. S3 Plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian eigenvalue for $[Ag_3(N_5)_4]_n \cdot n[Ag(NH_3)_2]$.

5. IR spectrum

Fig. S4 The IR spectrum of $[Ag_2(N_5)_2(EDA)]_n$.

6. TG curve

Fig. S5 The TG curve of $[Ag_2(N_5)_2(EDA)]_n$.

Reference

1 Y. Xu, Q. Lin, P. Wang and M. Lu, *Chem. -Asian J.*, 2018, **13**, 1669-1673.