Supporting Information

Fast Growth of Precursors for 3D Ordered TiO₂ Mesocrystals: from (NH₄)₂TiOF₄ Plates to NH₄TiOF₃ Disks

Hui Li*

School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.

Email:lih_37@163.com

Fig. S1 shows low magnification TEM images for ammonium oxofluorotitanate samples grown for 8 min at 200 mA cm⁻² in EG with 1 wt% NH_4F and 18 wt% H_2O before (a) and after (b) thermal heating. It can be seen that the tetrapod structure with a disk at the center is a representative structure of the obtained samples.

Fig. S1 Low magnification TEM images for typical ammonium oxofluorotitanate samples grown for 8 min at 200 mA cm⁻² in EG with 1 wt% NH_4F and 18 wt% H_2O before (a) and after (b) thermal heating.

Fig. S2 shows a typical ammonium oxofluorotitanate sample grown for 8 min at 200 mA cm⁻² in EG with 1 wt% NH₄F and 18 wt% H₂O before (a) and after (b) electron irradiation. As determined by selected area electron diffraction (SAED), rods of this tetrapod-like structure are $(NH_4)_2 TiOF_4$, while the disk is NH₄TiOF₃. It is shown that after the same dose of electron beam irradiation, the single crystal-like structure of $(NH_4)_2 TiOF_4$ was degraded to polycrystalline structure, while for NH₄TiOF₃, the single crystal-like structure was kept. TEM image in Fig. S1b shows clear difference

in morphology for the $(NH_4)_2 TiOF_4$ and $NH_4 TiOF_3$ part of the structure after electron diffraction.

Fig. S2 TEM images and corresponding SAED patterns for typical ammonium oxofluorotitanate samples grown for 8 min at 200 mA cm⁻² in EG with 1 wt% NH_4F and 18 wt% H_2O before (a) and after (b) electron irradiation.