Supporting information

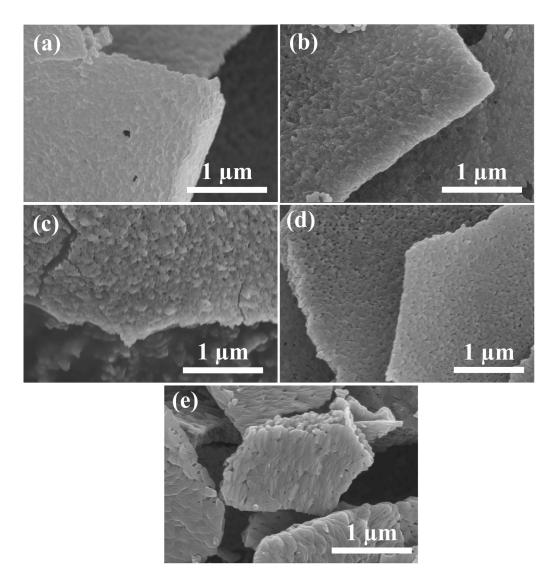
Enhancing lithium/sodium-ion storage behaviors in V2O5 nanosheet by freeze-

drying

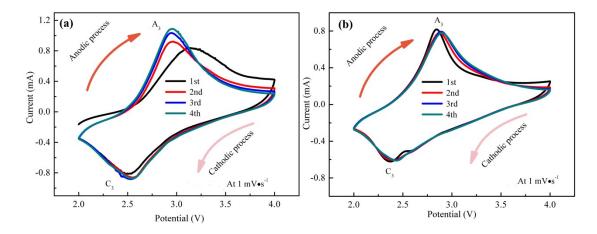
Lihua Wang^{1, #}, Guanghua Shen^{1, #}, Yanhua Zhao¹, Yongli Wang¹, and Yongjie

Zhao^{2,*}

¹School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing


526061, P R China

²School of Materials Science and Engineering, Beijing Institute of Technology,


Beijing 100081, PR China

*Corresponding author: zhaoyj14@bit.edu.cn

[#]These authors contribute equally to this article.

Figure S1. SEM images for different annealing temperature (a) freeze-drying treated NH₄VO₃, (b) 200 °C, (c) 250 °C, (d) 300 °C, (e) 350 °C.

Figure S2. (a) CV curves of the first four cycles at a scan rate of 1 mV s⁻¹ in the voltage region of 2.0~4.0 V (vs. Li/Li⁺): (a) bulk V_2O_5 and (b) V_2O_5 nanosheet.

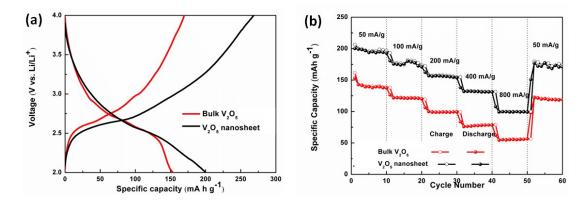


Figure S3. (a) Galvanostatic charge/discharge curves for the first cycle and (b) rate capability of bulk V_2O_5 and V_2O_5 nanosheets.

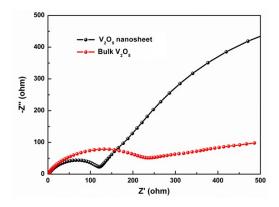


Figure S4. EIS plots of bulk V_2O_5 and V_2O_5 nanosheet electrodes vs Li/Li⁺,