Cubic core-shell structure of NiCoS_x/CoS₂ as high-efficiency tri-functional

catalyst for Zn-air battery and overall water splitting

Bingqian Wang, Jianyu Liu, Huaiyun Ge, Siwei Fan, Guanghui Zhang, Lingxue Zhao

and Guangda Li*

School of Materials Science and Engineering, Qilu University of Technology

(Shandong Academy of Sciences), Shandong, Jinan 250353, China

Corresponding author.

E-mail address: ligd@qlu.edu.cn

Fig. S1 (a) TEM images of the Ni₃[Co(CN)₆]₂. (b~c) SEM images of the NiCoS_x without Co(OH)₂.

Fig. S2 The nitrogen adsorption-desorption isotherms (a) and the corresponding pore size distribution curves (b) of Ni₃[Co(CN)₆]₂/Co(OH)₂ and NiCoS_x/CoS₂.

Fig. S3 K-L plots at 0.3 V, 0.4 V, 0.5 V, 0.6 V potentials for NiCoS_x/CoS₂.

Fig. S4 CV curves of $Ni_3[Co(CN)_6]_2/Co(OH)_2$ (a), $NiCoS_x/CoS_2$ (b), in the potential range of 1.006 - 1.106 V (vs. RHE). (c) The corresponding linear fitting of the capacitive current densities vs. the scan rate.

Fig. S5 Charge/discharge polarization curves of the rechargeable liquid ZABs based on the Pt/C catalyst and $NiCoS_x/CoS_2$ catalyst, respectively.

Fig. S6. Typical discharge curves of the rechargeable liquid ZABs based on the Pt/C catalyst and $NiCoS_x/CoS_2$ catalyst, respectively.

Fig. S7 Rate performance of $NiCoS_x/CoS_2$ at different current densities.

Fig. S8 Cycling stability of $NiCoS_x/CoS_2$ at 10 mA cm⁻² charge/discharge.

Table S1 Comparison of the performance of the as-prepared other Co-based Ni-based sulfides catalysts ORR performance.

Catalyst	E _{1/2}	Electrolyte	Ref.
NiCoS _x /CoS ₂	0.80	0.1 M KOH	This work
CoS ₂ @MXene	0.80	0.1 M KOH	1
N, P/CoS ₂ @TiO ₂	0.71	0.1 M KOH	2
CuS/NiS ₂	0.80	0.1 M KOH	3
Co ₉ S ₈ @NS-3DrGO	0.82	1 М КОН	4

Table S2 Comparison of the performance of the as-prepared other Co-based Ni-based sulfides catalysts OER performance.

Catalyst	$E_{j=20}$	Electrolyte	Ref.
NiCoS _x /CoS ₂	1.54	0.1 M KOH	This work
NiCo ₂ S ₄	1.56	1 M KOH	5
NiPS	1.63	1 M KOH	6
NiS ₂	1.48	1 M KOH	7
S-NiCoP/CC	1.55	1 M KOH	8

- S. Han, Y. Chen, Y. Hao, Y. Xie, D. Xie, Y. Chen, Y. Xiong, Z. He, F. Hu and L. Li, *Science China Materials*, 2021, 64, 1127-1138.
- L. Guo, J. Deng, G. Wang, Y. Hao, K. Bi, X. Wang and Y. Yang, Advanced Functional Materials, 2018, 28, 1804540.
- 3. L. An, Y. Li, M. Luo, J. Yin, Y. Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, *Advanced Functional Materials*, 2017, **27**, 1703779.
- Y. Li, Y. Zhou, H. Wen, J. Yang, C. Maouche, Q. Liu, Y. Wu, C. Cheng, J. Zhu and X. Cheng, Dalton Transactions, 2018, 47, 14992-15001.
- 5. Y. Xue, Z. Zuo, Y. Li, H. Liu and Y. Li, *Small*, 2017, **13**, 1700936.
- M. Wang, A. Saad, X. Li, T. Peng, Q.-T. Zhang, M. Kumar and W. Zhao, *Dalton Transactions*, 2021, 50, 12870-12878.
- 7. S. Huang, Z. Jin, P. Ning, C. Gao, Y. Wu, X. Liu, P. Xin, Z. Chen, Y. Jiang and Z. Hu, *Chemical Engineering Journal*, 2021, **420**, 127630.
- 8. L. Mai-Thi, N. Hoang-Thy and Q. Bui, *Materials Chemistry and Physics*, 2021, 270, 124746.