Supplementary information

An Insight into Sensitive detection of Metal ions using a Novel Cobalt MOF: Single crystal, Photoluminescence, and theoretical studies

Love Karan Rana¹, Prabhjyot Kaur¹, Thierry Maris², and Adam Duong¹*

Table of contents

1.	Comparison of PXRD pattern of asynthesized 1 and patterns recorded after exposing the	
	MOF (1) to different metal ions solutions with the simulated pattern (Fig. S1)2	
2.	Comparison of PXRD pattern of asynthesized 2 and its simulated pattern (Fig. S2)3	
3.	Comparison of PXRD pattern of asynthesized 3 and its simulated pattern (Fig. S3)3	
4.	BFDH morphologies of L1, compound 1 and 2 (Fig. S4)	
5.	¹ H-NMR of L1 (Fig. S5)4	
6.	¹³ C-NMR of L1 (Fig. S6)	
7.	IR spectra comparison of L1, H2BDC, 1 and 3 (Fig. S7).	
	6	
8.	IR spectra comparison of L1, L3, and compound 2 (Fig. S8)	
9.	Table S1- I.R table	
10. a) ORTEP diagram of L1 at 30% probability, b) showing dihedral angle between		
	naphthalene and amide plane (Fig. S9)8	
11.	ORTEP diagram of compound 1 at 30% probability (Fig. S10)9	
12.	ORTEP diagram of compound 2 at 30% probability (Fig. S11)	
13.	ORTEP diagram of compound 3 at 30% probability (Fig. S12)10	
14.	Thermal stability curve of compound 1 , 2 and 3 (Fig. S13)	
15.	Electrostatic potentials mapped on electron isodensity surface at 0.01 au. MEP plot a) for	
	L1 , and b) compound 1 (Fig. S14)11	
16.	Quenching of fluorescence intensity of 1 by Cu ⁺² , Fe ⁺² , Pb ⁺² , Cd ⁺² , Co ⁺² , and Cu ⁺ ions (Fig.	
	\$15)	
17.	Emission spectra and the corresponding Stern-Volmer plots of 1 in different a) Ru ⁺³ , b)	
	Fe ⁺³ and c) Hg ⁺² concentrations in DMF (Fig. S16)12	
18.	Quenching of fluorescence of 1 by Ni^{+2} , Be^{+2} , Mn^{+2} , and Zn^{+2} ions (Fig. S17)13	

- **21.** Table S2- Pertinent atomic parameters for **1**, **2**, and **3**.....14-17

Fig. S1- Comparison of PXRD pattern of asynthesized compound **1** and patterns recorded after exposing **1** to different metal ions solutions with the simulated pattern.(Here compound **1** has been denoted as MOF for the illustration to be meaningful).

Fig. S2- Comparison of PXRD pattern of asynthesized compound 2 and its simulated pattern.

Fig. S3- Comparison of PXRD pattern of asynthesized compound 3 and its simulated pattern.

Fig. S4- BFDH morphologies of L1, compound 1 and 2.

Fig. S5 ¹H-NMR of L1

Fig. S6¹³C-NMR of L1

Fig. S7 - IR spectra comparison of L1, H2BDC, and compound 1 and 3.

Fig. S8 – IR spectra comparison of L1, H3BTB, and compound 2.

From the IR spectra (Fig. S7) it is apparent that the peak at 1509 and 1574 cm⁻¹ (C=N stretching, pyridine ring) in **L1** (Red graph) slightly shifted in the spectra of compound **1** (blue graph) confirming the coordination of pyridine rings to Co(II) ions, while the peak at 1673cm⁻¹ corresponds to C=O stretching of **L1** (amide group, red graph) is slightly shifted in **1** (1652cm⁻¹) which might be due to the hydrogen bonding with solvent molecules (DMF) (Fig. S7). Similarly, the peak at 1631cm⁻¹ (C=O stretching, carboxylic group) in **H2BDC** (black graph) is shifted and flattened at 1616 cm⁻¹ in the spectra of **1** (blue graph) which confirms the coordination of carboxylic groups to Co(II) ions (Fig. S7). In the case of **3**, respective spectral peaks confirms the coordination of ligands with Ni(II). In addition, a sharp band at 1523 cm⁻¹ and a weak band at 1593 cm⁻¹, respectively, confirms the presence both free and coordinated carbonyl groups (carboxylic) (Fig. S7). A shift of 16 cm⁻¹ (from 1676 cm⁻¹ (**L1**) to 1660 cm⁻¹) in **2** (Fig. S8) was observed for C=O (amide) stretching, which might be due the hydrogen bonding between amide group and

lattice DMF molecules. Similarly, an observed shift in N-H (amide group) stretching frequency from 3104 cm^{-1} (L1) to 3061 cm^{-1} (2) is due to hydrogen bonding with DMF molecules.

Complex	Group	Functionality	Wavenumber (cm ⁻¹)
L1	ν (N-H)	Amide	3105 (m, s)
	ν (C=O)	Amide	1667(s)
	ν (C=N)	Pyridine	1510 (m,s)
	ν (C-H) _{bending}	Naphthalene	1417 (m, s)
1	ν (N-H)	Amide	3286 (b)
	ν (C=O)	Amide	1652 (s)
	ν (C=N)	Pyridine	1491 (w)
	ν (C-H) bending	Naphthalene	1378 (m, s)
	ν (C-H) Overtone	Naphthalene	2870 (w)
	ν (C-H)	Methyl group (DMF)	2929 (w)
2	ν (N-H)	Amide	3095 (w, b)
	ν (C=O)	Amide	1662 (m)
	ν (C=O)	Carboxylic	1590 (m, s)
3	ν (N-H)	Amide	3335 (b)
	ν (C=O)	Amide	1641 (m, s)
	ν (C=O) _{free}	Carboxylic	1523 (s)
	ν (C=O) _{Coordinated}	Carboxylic	1593 (m, w)

Table S1- IR table

Fig. S9 a) ORTEP diagram of L1 at 30% probability, b) showing dihedral angle between naphthalene and amide plane.

Fig. S10 ORTEP diagram of 1 at 30% probability.

Fig. S11 ORTEP diagram of 2 at 30% probability.

Fig. S12 ORTEP diagram of 3 at 30% probability.

Thermal stability-

Fig. S13 Thermal stability curves of L1, compound 1, 2, and 3.

Fig. S14 - Electrostatic potentials mapped on electron isodensity surface at 0.01 au. MEP plot a) for **L1**, and b) Co(II) complex using Avogadro software¹. (RWB scheme was used, where red colour corresponds to high electron density regions and blue colour corresponds to least electron density regions)

Fig. S15 Quenching of fluorescence intensity of **1** by Cu^{+2} , Fe^{+2} , Pb^{+2} , Cd^{+2} , Co^{+2} , and Cu^+ ions. (Note- Blank corresponds to the emission from **1** before the addition of analytes)

Stern-Volmer plots

Stern-Volmer equation is used to find out the catalytic efficiency of analytes in a photophysical intermolecular deactivation process. The equation is $(I_0/I) = K_{SV} [A] + 1$, where in our case, I_0 is the initial fluorescence intensity of **1** soaked in DMF, I is the fluorescence intensity in the presence of analyte, [A] is the molar concentration of analyte, and K_{SV} is the Stern-Volmer constant (M⁻¹) or quenching constant.

Fig. S16- Emission spectra and the corresponding Stern-Volmer plots of **1** in different **a**) Ru^{+3} , **b**) Fe^{+3} and **c**) Hg^{+2} concentrations in DMF.

Fig. S17 Quenching of fluorescence of **1** by Ni^{+2} , Be^{+2} , Mn^{+2} , and Zn^{+2} ions. (Note-Blank corresponds to the emission from **1** before the addition of analytes)

Fig. S18 Comparison of fluorescence quenching of **1** with **a**) different Fe(III) and **b**) Cu(II) salts. (Note- Blank corresponds to the emission from Co-MOF before the addition of analytes)

Fig. S19 Illustrates negligible change in fluorescence intensity upon the addition of ClO_4^- , SCN^- , and Br^- ions. (Note- Blank corresponds to the emission from **1** before the addition of analytes)

Table S2- Pertinent atomic parameters for compound 1, 2, and 3.

Bond lengths		
1	2	3
Co4-N3 2.150(10)	Zn1-O1 1.919(2)	Ni1-N2 2.118(2)
Co2-N6 ⁴ 2.141(10)	Zn1-O2 1.908(2)	Ni1-O1 2.072(15)
Co1-O3 ¹ 2.127(7)	Zn1-O14 ¹ 1.983(2)	Ni1-O2 ³ 2.0420(18)
Co1-O4 2.048(7)	Zn1-O21 ² 1.960(2)	
Co1-O13 ² 2.066(6)	Zn2-O1 1.927(2)	
Co1-O13 ³ 2.066(6)	Zn2-O6 1.935(2	
Co2-O1 2.154(7)	Zn2-O8 1.980(2)	
Co2-O2 2.237(7)	Zn2-O13 ¹ 1.960(2)	
Co2-O3 2.140(7)	Zn3-O1 1.929(2)	
Co2-O5 2.021(7)	Zn3-O5 1.927(2)	

Co2-O14 ³ 2.034(6)	Zn3-O9 1.959(2)	
Co3-O6 2.069(7)	Zn3-O20 ² 1.977(2)	
Co3-O8 ⁵ 2.054(6)	Zn4-O1 2.030(2)	
Co3-O10 ⁵ 2.116(7)	Zn4-O3 2.198(2)	
Co4-O7 2.047(7)	Zn4-O4 2.122(2)	
Co4-O9 2.021(6)	Zn4-O7 2.112(2)	
Co4-O10 2.140(8)	Zn4-O10 2.135(2)	
Co4-O11 2.261(7)	$Zn4-N4^{3} 2.102(3)$	
Co4-O12 2.135(6)	$Zn5-O9^4$ 1.951(2)	
	Zn5-O23 2.020(3)	
	Zn5-O24 1.952(3)	
	Zn5-O25 2.384(3)	
	Zn5-O27 ⁵ 1.965(3)	
	$Zn6-O9^4$ 1.952(2)	
	Zn6-O11 ⁶ 1.959(3)	
	Zn6-O18 ⁶ 1.974(2	
	Zn6-O22 1.951(2)	
	Zn7-O9 1.925(2)	
	Z_n7-O15 1.924(2)	
	$Z_n7-O17^5 + 961(2)$	
	Z_n7-O26^7 1.954(3)	
	$Z_{n8}-O9 = 1953(2)$	
	$Z_{n}8-O12^{5}1.977(2)$	
	$Z_{n8}-O16 = 2.043(3)$	
	$Z_{n8} - 0.19 + 2.272(4)$	
	$Z_{n8}-N1 = 2.031(3)$	
	210 101 2.001(0)	
Bond angles		
O_3 -Co1- O_3^1 180	$O1-Zn1-O14^1$ 108.56(9)	O1 ³ -Ni1-N2 85.3(6)
O4-Co1-O392.2(3)	$O1-Zn1-O21^2$ 111.96(10)	O1-Ni1-N2.94.7(6)
$O4-Co1-O3^{1}92.2(3)$	O_2 -Zn1-O1 122.81(9)	$O1A^3$ -Ni1-O1A 180.00(17)
$O4-Co1-O3^{1} 87 8(3)$	O_2 -Zn1-O14 ¹ 102 98(11)	$O1A^3$ -Ni1-N2 ³ 85 32(14)
O4-Co1-O4 180 0(4)	O_2 -Zn1- O_2 ¹² 106 50(11)	$O1A^3$ -Ni1-N2 94 68(14)
$O4-Co1-O13^2 85 8(3)$	$O21^2$ -Zn1-O14 ¹ 101 72(11)	$N_2-N_11-N_2^3$ 180 0
$O4-Co1-O13^3 94 2(3)$	$O1-Zn^2-O6$ 115 29(9)	Ω^2 -Ni1- Ω^3 90 5(7)
$O13^2$ -Co1-O3 ¹ 87 9(3)	$O1-Zn^2-O8 \ 109 \ 39(10)$	O_2 -Ni1-O1 ³ 89 5(7)
$O13^{3}$ -Co1-O3 ¹ 92.1(3)	$O1-Zn2-O13^{1}$ 113.61(9)	$O2^{3}$ -Ni1-O1A 91.05(18)
$O13^2$ -Co1-O13 ³ 180 0	$O6-Zn2-O8 \ 101 \ 04(11)$	$O2^{3}$ -Ni1-O1A ³ 88 95(18)
O1-Co2-O2, 82, 9(3)	$O6-Zn2-O13^{1}$ 105 44(11)	O_2 -Ni1-N2 90 61(8)
$O_3 - C_0 - O_1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	$013-Zn^2-08$ 111 37(10)	O_2 -Ni1-N2 ³ 89 39(8)
$O_3 - C_0 - O_2 - O_2 - S_9 - G_3$	O1-Zn3-O9 112 64(11)	O_2 -Ni1- O_2^3 180
$O_3 - C_0 - N_6^4 + 162 - 5(3)$	$O1-Zn3-O2O^2$ 108 15(10)	0210102100
$05 \cdot Co^2 \cdot O1 \cdot 173 \cdot 3(3)$	O_{5} -Zn3-O1 116 65(9)	
$05-C_02-02-95,1(3)$	05-Zn3-O9 113 75(11)	
$05-C_02-03-100-5(3)$	$O5-Zn3-O2O^2$ 108 01(12)	
$05-C_02-014^3$ 98 8(3)	O9-Zn3-O20 95 17(12)	
$O5-Co2-N6^4$ 88 3(3)	O1-Zn4-O393.19(8)	
$O14^3$ -Co2-O1 85 5(3)	O1 - Zn4 - O4 92 69(9)	
$01-C_02-02$ 153 9(3)	O1-Zn4-O7 94.01(9)	
$O14^3$ -Co2-O3 96.1(3)	O1-Zn4-O10 88.67(9)	
$O14^{3}$ -Co2-N6 ⁴ 97.5(3)	O1-Zn4-N4 178.66(10)	

N6 ⁴ -Co2-O1 86.1(3)	O4-Zn4-O3 90.32(9)	
N6 ⁴ -Co2-O2 104.9(3)	O4-Zn4-O10 174.61(9)	
O6-Co3-O6 180.0(3)	O7-Zn4-O3 172.79(9)	
O6-Co3-O10 ⁵ 91.4(3)	O7-Zn4-O4 89.08(10)	
O6 ⁵ -Co3-O10 ⁵ 88.6(3)	O7-Zn4-O10 96.03(10)	
O6-Co3-O10 88.6(3)	O10-Zn4-O3 84.39(9)	
O6-Co3-O10 91.4(3)	N4-Zn4-O3 85.48(10)	
O8 ⁵ -Co3-O6 85.5(3)	N4 ³ -Zn4-O4 87.09(10)	
O8 ⁵ -Co3 O6 ⁵ 94.5(3)	N4 ³ -Zn4-O7 87.31(10)	
O8-Co3-O6 94.5(3)	N4 ³ -Zn4-O10 91.43(10)	
$O8-Co3-O6^5 85.5(3)$	O9-Zn5-O23 98.71(10)	
$O8-Co3-O8^5$ 180.0(4)	$O9^4$ -Zn5-O25 97.20(10)	
O8-Co3-O10 ⁵ 91.8(3)	O9 ⁴ -Zn5-O27 ⁵ 111.46(10)	
O8-Co3-O10 ⁵ 88.2(3)	O23-Zn5-O25 157.89(11)	
$O8^{5}$ -Co3-O10 ⁵ 91.8(3)	O24-Zn5-O9 132.22(14)	
$O8-Co3-O10^5 88.2(3)$	O24Zn5-O23 99.73(13)	
O10-Co3-O10 ⁵ 180	O24-Zn5-O25 58.16(13)	
O7-Co4-O10 97.0(3)	O24-Zn5-O27 110.25(15)	
O7-Co4-O11 154.8(3)	O27 ⁵ -Zn5-O23 95.16(12)	
O7-Co4-O12 85.8(3)	O27 ⁵ -Zn5-O25 93.19(13)	
O7-Co4-N3 94.4(3)	$O9^4$ -Zn6-O11 ⁶ 110.98(10)	
O9-Co4-O7 99.1(3)	O9 ⁴ -Zn6-O18 ⁶ 109.33(9)	
O9-Co4-O10 98.8(3)	O11 ⁶ -Zn6-O18 ⁶ 101.09(12)	
O9-Co4-O11 93.6(3)	$O22$ -Zn6- $O9^4$ 119.46(10)	
O9-Co4-O12 174.3(3)	O22-Zn6-O11 ⁶ 107.53(13)	
O9-Co4-N3 89.1(3)	O22-Zn6-O18 ⁶ 106.83(11)	
O10-Co4-O11 59.4(3)	$O9-Zn7-O17^{5}$ 110.83(9)	
O10-Co4-N3 164.9(3)	O9-Zn7-O26 ⁸ 114.32(10)	
O12-Co4-O10 83.5(3)	O15-Zn7-O9 115.54(9)	
O12-Co4-O11 83.1(3)	O15-Zn7-O17 ⁵ 110.81(10)	
O12-Co4-N3 87.5(3)	O15 -Zn7-O26 ⁸ 107.27(12)	
N3-Co4-O11 107.5(3)	O26 ⁸ -Zn7-O17 ⁵ 96.44(13)	
	O9-Zn8-O12 ⁵ 109.75(10)	
	O9-Zn8-O16 98.05(10)	
	O9-Zn8-O19 81.25(12)	
	O9-Zn8-N1 144.95(10)	
	O12-Zn8-O16 97.44(12)	
	O12 ⁵ -Zn8-O19 93.31(19)	
	O12 ⁵ -Zn8-N1 102.41(11)	
	O16-Zn8-O19 168.77(18)	
	N1-Zn8-O16 91.10(11)	
	N1-Zn8-O19 83.40(12)	
	Zn1-O1-Zn2 107.90(10)	
	Zn1-O1-Zn3 108.64(10)	
	Zn1-O1-Zn4 109.39(9)	
	Zn2-O1-Zn3 105.78(9)	
	Zn2-O1-Zn4 110.45(10)	
	Zn3 O1 Zn4 114.44(10)	
	Zn5 ⁷ -O9-Zn6 ⁷ 108.31(10)	
	Zn5 ⁷ -O9-Zn8 114.37(10)	
	Zn67-O9-Zn8 105.06(10)	

Zn7-O9-Zn5 ⁷ 106.15(10)	
Zn7-O9-Zn6 ⁷ 108.29(9)	
Zn7-O9-Zn8 114.41(10)	

Symmetry elements 1: ¹1-X,2-Y,-Z; ²1-X,2-Y,1-Z; ³+X,+Y,-1+Z; ⁴-X,1-Y,1-Z; ⁵2-X,2-Y,1-Z; ⁶+X,+Y,1+Z; ⁷-X,2-Y,-Z; ⁸3-X,2-Y,1-Z. **2:** ¹+X,-1/2-Y,1/2+Z; ²+X,-1/2-Y,-1/2+Z; ³1-X,1-Y,1-Z; ⁴1+X,1/2-Y,1/2+Z; ⁵+X,1/2-Y,1/2+Z; ⁶1+X,+Y,1+Z; ⁷-1+X,+Y,+Z. **3:** ¹2-X,1-Y,2-Z; ²2-X,-Y,-Z; ³1-X,1-Y,1-Z.

References –

1. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *Journal of Cheminformatics*, 2012, DOI:10.1186/1758-2946-4-17.