Supporting information

Discovery and characterization of new crystal forms of bio-based nylon 4F salt

Yingying Wang, ^a Pengpeng Yang, ^{*b} Zihan Li, ^b Jinqiu Fu, ^a Yuzhong Shi, ^a Yajie Zhang, ^c Keke Zhang, ^{*a} Wei Zhuang, ^{a,b} Hanjie Ying ^{a,b}

^aBiology+ Joint Research Center, School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou, 450001, China

^bNational Engineering Technique Research Center for Biotechnology, State Key Laboratory of

Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical

Engineering, Nanjing Tech University, Nanjing, 210009, China

^cNingbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315200, China

Table of Contents

Figure S1. Comparison of PXRD patterns

Figure S2. asymmetric unit diagrams

Figure S3. Packing diagrams

Table S1. Hydrogen bonds data

Table S2. Torsion angles data

Figure S4-S7. Hirshfeld Surface Analysis and 2D fingerprint

Table S3. solubility data

Figure S1. Comparison of PXRD patterns with the simulated patterns from SCXRD for three forms of nylon 4F salt.

Figure S2. The asymmetric unit ORTEP diagrams of three crystal forms of nylon 4F monomer salt crystal forms, showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level: Form I (a) Form HI (b) and Form HII (c).

Figure S3. Packing diagrams of the nylon 4F monomer salt: Form I (a) Form HI (b) and Form HII (c).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Form I							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D-H····A	D(D-H) / Å	d(H•••A) / Å	d(D····A)∕ Å	<dha< td=""></dha<>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1-H1A····O2	0.890(3)	1.893(2)	2.779(4)	173.3(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1-H1B····O4	0.890(3)	2.041(3)	2.853(4)	151.2(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1-H1C····O3	0.890(3)	2.053(3)	2.932(4)	169.0(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1-H1C····O2	0.890(3)	2.519(2)	2.971(4)	112.1(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2-H2A····O5	0.890(3)	2.121(4)	2.937(5)	152.1(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2-H2A····O4	0.890(3)	2.356(3)	3.154(4)	149.3(2)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N2-H2B····O5	0.891(3)	1.922(3)	2.758(4)	155.7(2)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N2-H2C····O3	0.890(3)	2.061(3)	2.924(4)	163.3(2)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Form HI					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D-HA	D(D-H) / Å	d(H···A) / Å	d(D…A)/ Å	<dha< td=""></dha<>			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N1-H1A····O6	0.890(3)	2.220(3)	3.074(4)	160.6(2)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N1-H1C····O3	0.890(3)	1.852(3)	2.741(4)	177.1(2)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N1-H1B····O4	0.890(3)	2.077(3)	2.956(5)	169.0(2)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N2-H2A····O6	0.890(4)	2.028(4)	2.915(4)	174.1(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2-H2B····O4	0.890(3)	2.051(3)	2.878(4)	154.0(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N2-H2C····O2	0.890(3)	1.958(3)	2.795(4)	156.0(2)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N2-H2C····O1	0.890(3)	2.415(2)	2.998(4)	123.4(2)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O6-H6A····O3	0.850(3)	1.896(3)	2.742(4)	174.1(3)			
Form HII $D-H\cdots A$ $D(D-H) / Å$ $d(H\cdots A) / Å$ $d(D\cdots A) / Å$ $N1-H1A\cdots O40.890(3)1.995(2)2.885(3)178.6(2)N1-H1C\cdots O20.890(3)2.057(2)2.942(3)172.8(2)N1-H1B\cdots O30.890(3)1.945(2)2.829(3)172.4(2)N2-H2A\cdots O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B\cdots O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C\cdots O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A\cdots O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B\cdots O50.850(2)1.908(2)2.757(3)177.1(2)$	O6-H6B····O5	0.859(10)	1.889(17)	2.712(4)	160(3)			
Form HII $D-H\cdots A$ $D(D-H) / Å$ $d(H\cdots A) / Å$ $d(D\cdots A) / Å$ $N1-H1A\cdots O40.890(3)1.995(2)2.885(3)178.6(2)N1-H1C\cdots O20.890(3)2.057(2)2.942(3)172.8(2)N1-H1B\cdots O30.890(3)1.945(2)2.829(3)172.4(2)N2-H2A\cdots O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B\cdots O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C\cdots O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A\cdots O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B\cdots O50.850(2)1.908(2)2.757(3)177.1(2)$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Form HII					
N1-H1A···O40.890(3)1.995(2)2.885(3)178.6(2)N1-H1C···O20.890(3)2.057(2)2.942(3)172.8(2)N1-H1B···O30.890(3)1.945(2)2.829(3)172.4(2)N2-H2A···O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B···O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C···O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	D-H····A	D(D-H) / Å	d(H…A) / Å	d(D···A)∕ Å	<dha< td=""></dha<>			
N1-H1C···O20.890(3)2.057(2)2.942(3)172.8(2)N1-H1B···O30.890(3)1.945(2)2.829(3)172.4(2)N2-H2A···O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B···O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C···O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	N1-H1A····O4	0.890(3)	1.995(2)	2.885(3)	178.6(2)			
N1-H1B···O30.890(3)1.945(2)2.829(3)172.4(2)N2-H2A···O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B···O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C···O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	N1-H1C····O2	0.890(3)	2.057(2)	2.942(3)	172.8(2)			
N2-H2A···O20.890(2)1.949(2)2.829(3)169.7(2)N2-H2B···O60.890(3)2.104(2)2.922(3)152.2(2)N2-H2C···O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	N1-H1B····O3	0.890(3)	1.945(2)	2.829(3)	172.4(2)			
N2-H2B···O6 0.890(3) 2.104(2) 2.922(3) 152.2(2) N2-H2C···O5 0.890(3) 1.900(3) 2.783(4) 171.7(2) O6-H6A···O3 0.850(2) 2.015(2) 2.864(3) 177.1(1) O6-H6B···O5 0.850(2) 1.908(2) 2.757(3) 177.1(2)	N2-H2A····O2	0.890(2)	1.949(2)	2.829(3)	169.7(2)			
N2-H2C···O50.890(3)1.900(3)2.783(4)171.7(2)O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	N2-H2B····O6	0.890(3)	2.104(2)	2.922(3)	152.2(2)			
O6-H6A···O30.850(2)2.015(2)2.864(3)177.1(1)O6-H6B···O50.850(2)1.908(2)2.757(3)177.1(2)	N2-H2C····O5	0.890(3)	1.900(3)	2.783(4)	171.7(2)			
O6-H6B···O5 0.850(2) 1.908(2) 2.757(3) 177.1(2)	O6-H6A···O3	0.850(2)	2.015(2)	2.864(3)	177.1(1)			
	O6-H6B····O5	0.850(2)	1.908(2)	2.757(3)	177.1(2)			

Table S1. Hydrogen bonds data of three crystal forms of nylon 4F monomer salt.

Form I		Form H	Ι	Form HII	
C8#1-C8-C7-N1	177.3(3)	N1-C7-C8-C8#1	-178.4 (4)	N1-C7-C8-C8#1	64.1(5)
N2-C9-C10-C10#2	177.4(3)	N2-C9-C10-C10#2	-179.7 (4)	N2-C9-C10- C10#2	66.4(9)
C5-O1-C2-C3	-0.5(3)	C5-O1-C2-C3	-0.8 (4)	C5-O1-C2-C3	1.0(3)
C5-O1-C2-C1	-179.9(2)	C5-O1-C2-C1	177.4 (3)	C5-O1-C2-C1	178.2(2)
C4-O3-C2-O1	-0.2(4)	O1-C2-C3-C4	0.4 (4)	01-C2-C3-C4	-0.8(3)
C4-C3-C2-C1	179.0(3)	C1-C2-C3-C4	-177.3 (4)	C1-C2-C3-C4	-177.2(3)
O2-C1-C2-O1	10.3(4)	O2-C1-C2-O1	2.0(5)	O2-C1-C2-O1	5.4(4)
O3-C1-C2-O1	-168.3(2)	O3-C1-C2-O1	-179.4(3)	O3-C1-C2-O1	-174.0(2)
O2-C1-C2-C3	-168.9(3)	O2-C1-C2-C3	179.5(4)	O2-C1-C2-C3	-178.3(3)
O3-C1-C2-C3	12.5(5)	O3-C1-C2-C3	-1.9(6)	O3-C1-C2-C3	2.2(5)
C2-O1-C5-C4	1.0(3)	C2-O1-C5-C4	0.8(4)	C2-O1-C5-C4	-0.7(3)
C2-O1-C5-C6	-178.7(2)	C2-O1-C5-C6	177.5(3)	C2-O1-C5-C6	179.0(3)
C4-C5-C6-O5	1.3(5)	C4-C5-C6-O5	-18.5(6)	C4-C5-C6-O5	3.3(5)
01-C5-C6-O5	-179.1(3)	01-C5-C6-O5	165.7(3)	01-C5-C6-O5	-176.4(3)
C4-C5-C6-O4	-178.3(3)	C4-C5-C6-O4	159.3(4)	C4-C5-C6-O4	-177.3(3)
01-C5-C6-O4	1.3(4)	01-C5-C6-O4	-16.5(5)	01-C5-C6-O4	3.0(4)
01-C5-C4-C3	-1.1(4)	C3-C4-C5-O1	-0.5(4)	C3-C4-C5-O1	0.2(3)
C6-C5-C4-C3	178.5(3)	C3-C4-C5-C6	-176.6(4)	C3-C4-C5-C6	-179.4(3)
C2-C3-C4-C5	0.8(4)	C2-C3-C4-C5	0.1(4)	C2-C3-C4-C5	0.4(3)
		Form HII (con	tinued)		
		N2-C9-C10'-C10'#2	-66(2)		

 Table S2. Torsion angles (°) data of the nylon 4F monomer salt three crystal forms.

de

2.0

de

2.4

Figure S4. Hirshfeld surfaces of the Form I and its corresponding fingerprint plots.

Figure S5. Hirshfeld surfaces of the Form HI and its corresponding fingerprint plots.

Figure S6. Hirshfeld surfaces of the Form HII and its corresponding fingerprint plots.

Figure S7. The distance of hydrogen-bond contacts of three forms of nylon 4F salt in Figure 5.

 Table S3. Experimental mole fraction solubility of nylon 4F monomer salt Form I (x_1)

 and calculated CNIBS/RS mole fraction solubility (x^{calcd}) in binary solvent mixtures

 of water + ethanol.

 T/K
 x_2

 10⁴ x_1 10⁴ x^{calcd}

 0.102
 0.00001

1/1	λ_2	$10 x_1$	10 X	$10 (x_1 - x) / x_1$
	0.7	2.4480	2.4482	-0.0093
	0.75	1.1717	1.1698	0.1687
202.15	0.8	0.5516	0.5576	-1.0927
283.15	0.85	0.2726	0.2643	3.0443
	0.9	0.1196	0.1240	-3.6661
	0.95	0.0574	0.0573	0.1585
	0.7	2.8781	2.8803	-0.0764
	0.75	1.5054	1.4932	0.8106
202.15	0.8	0.6728	0.6989	-3.8767
293.15	0.85	0.3408	0.3211	5.7719
	0.9	0.1611	0.1592	1.1681
	0.95	0.0909	0.0946	-4.1449
	0.7	3.6498	3.6188	0.8498
	0.75	1.8596	1.8796	-1.0742
202.15	0.8	0.8442	0.9134	-8.2050
505.15	0.85	0.5041	0.4676	7.2275
	0.9	0.4192	0.2879	31.3249
	0.95	0.1772	0.2468	-39.2395

Table S4. Parameters of the CNIBS/RS model for the solubility of nylon 4Fmonomer salt Form I in water and binary solvent mixtures of water + ethanol.

T/K	B_1	B_2	B ₃	B ₄	B ₅	R-Square	10 ² RMSD
283.15	10.5390	-9.4878	-14.0963	16.0359	-6.6444	0.9999	0.4626
293.15	-21.6454	71.1574	-12.4050	-111.7530	72.0655	0.9990	1.4368
303.15	-29.8683	101.0490	-35.8501	-129.0101	92.6181	0.9967	7.0200

Table S5. Parameters of the modified Apelblat model for nylon 4F monomer salt in pure water.

solvent	А	В	С	R-Square	10 ⁶ RMSD
Pure water	58.4332	-3510.2090	-8.6256	0.9940	3.2648