Supporting Information

Influence of reaction temperature and stoichiometry on the coordination mode of a multidentate pyridylpyrazole ligand in Co(II) complexes: from 0D mononuclear to 3D frameworks

Ling-Mei Zhang,^a Chao Feng,^b Yu-Meng Yang,^a Huan-Huan Huang,^a Guo-Ning Zhang,^c Yu-Cheng Wang^c and Hong Zhao^{*a}

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.

^b School of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, PR China.
 ^c Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, PR China.
 *e-mail: <u>zhaohong@seu.edu.cn</u>

Table S1 Selected bond lengths (Å) and angles (°) for complexes 1–3.

Table S2 Hydrogen bond parameters for complexes 1–3.

Fig. S1 ¹H NMR (400 MHz, DMSO- d_6) spectrum of H₂ppza.

Fig. S2 IR spectra of H₂ppza ligand and complexes 1–3 from 400 cm⁻¹ to 4000 cm⁻¹.

Fig. S3 Asymmetric unit of 1–3, drawn with displacement ellipsoids at 30% probability level.

Fig. S4 PXRD patterns of simulated and experimental crystals of complexes 1–3.

Fig. S5 (a) UV-Vis absorption spectra and (b) luminescence spectra of 10⁻⁵ M DMSO solutions of

 H_2 ppza and its corresponding complexes 1–3.

Fig. S6 ECL intensity-time profile of blank electrode.

Fig. S7 Electrochemiluminescence for $Ru(bpy)_3^{2+}$.

1				
Co1–O1	2.0966(13)	Co1–O3	2.1164(14)	
Co1–N	2.1119(14)	Co1–O1 ^a	2.0966(13)	
Co1–O3ª	2.1164(14)	Co1–N1 ^a	2.1119(14)	
O1-Co1-O3	172.46(5)	O1-Co1-N1	77.99(5)	
O1–Co1–O1 ^a	94.74(5)	O1–Co1–O3ª	89.35(5)	
O1–Co1–N1 ^a	96.72(5)	O3-Co1-N1	95.27(5)	
O1ª-Co1-O3	89.35(5)	O3-Co1-O3ª	87.32(5)	
O3–Co1–N1ª	90.32(5)	Olª-Col-Nl	96.72(5)	
O3ª-Co1-N1	90.32(5)	N1-Co1-N1 ^a	172.29(6)	
O1ª-Co1-O3ª	172.46(5)	Olª-Col-Nlª	77.99(5)	
O3ª-Co1-N1ª	95.27(5)			
Symmetry code: $a = 1-x$, y, $1/2-z$				

Table S1a. Selected bond lengths (Å) and angles (°) for complex 1.

Table S1b. Selected bond lengths (Å) and angles (°) for complex 2.

2				
Co1–O2	2.0656(12)	Co1–N1	2.2226(14)	
Co1–O2 ^a	2.0656(12)	Co1–N1 ^a	2.2226(14)	
Co1–N3 ^b	2.1411(16)	Co1–N3°	2.1411(16)	
O2-Co1-N1	76.50(5)	O2–Co1–O2 ^a	166.15(5)	
O2–Co1–N1 ^a	93.23(5)	O2-Co1-N3 ^b	87.90(6)	
O2-Co1-N3°	101.94(6)	O2ª-Co1-N1	93.23(5)	
N1-Co1-N1 ^a	85.51(5)	N1-Co1-N3 ^b	164.34(5)	
N1–Co1–N3°	94.21(5)	O2ª-Co1-N1ª	76.50(5)	
O2a–Co1–N3b	101.94(6)	O2ª-Co1-N3°	87.90(6)	
N1ª-Co1-N3 ^b	94.21(5)	N1ª-Co1-N3°	164.34(5)	
N3 ^b -Co1-N3 ^c	90.23(6)			
Symmetry code: $a = -x$	x, y, $1/2-z$; b = $-1/2+x$,	, 1/2+y, z; c = 1/2–x, 1/2+y	r, 1/2—z	

2

3				
Co1–Cl1	2.4576(13)	Co1-O2	2.085(3)	
Co1–O3	2.157(3)	Co1-N1	2.171(3)	
Co1–N3 ^a	2.153(3)	Co1–O1 ^b	2.027(3)	
Cl1-Co1-O2	87.16(9)	Cl1-Co1-O3	175.61(10)	
Cl1-Co1-N1	91.11(11)	Cl1-Co1-N3ª	92.20(10)	
Cl1-Co1-O1 ^b	93.83(8)	O2-Co1-O3	88.57(13)	
O2-Co1-N1	77.86(12)	O2-Co1-N3ª	88.83(12)	
O1 ^b -Co1-O2	176.96(11)	O3-Co1-N1	86.99(14)	
O3–Co1–N3ª	88.73(13)	O1 ^b -Co1-O3	90.48(12)	
N1–Co1–N3ª	166.10(13)	O1 ^b –Co1–N1	104.97(13)	
O1 ^b -Co1-N3 ^a	88.27(12)			
Symmetry code: $a = 1/2+x, -1/2+y, z; b = -1/2+x, 3/2-y, -1/2+z$				

Table S1c. Selected bond lengths (Å) and angles (°) for complex 3.

 Table S2 Hydrogen bond parameters for complexes 1–3.

D-НА	D-H (Å)	HA (Å)	DA (Å)	D–HA (°)
1				
N2-H2O2 ^a	0.8600	1.8500	2.697(2)	167.00
O3-H3AN3 ^b	0.8200	2.0100	2.804(2)	164.00
O3-H3BO1ª	0.8400	2.3700	3.0556(19)	139.00
O3-H3BO2ª	0.8400	2.2300	3.043(2)	162.00
C9–H9O2ª	0.9300	2.5300	3.427(3)	162.00
Symmetry code: $a = 1/2+x, 1/2+y, z; b = x, 1-y, 1/2+z$				

N2-H2O1 ^a	0.8600	1.9300	2.687(2)	145.00	
С7-Н7О2ь	0.9300	2.3700	2.904(3)	116.00	
С9-Н9О2ª	0.9300	2.5700	3.454(2)	158.00	
Symmetry code: $a = 1/2$	Symmetry code: $a = 1/2+x$, $1/2-y$, $1/2+z$; $b = 1/2+x$, $-1/2+y$, z				
3					
N2-H2ACl1ª	0.8600	2.8000	3.638(4)	166.00	
N2-H2AO2ª	0.8600	2.4700	2.978(4)	118.00	
O3-H3ACl1 ^b	0.8000	2.4900	3.267(4)	165.00	
O3-H3BCl1°	0.6800	2.7100	3.287(4)	145.00	
C7-H7O2 ^d	0.9300	2.4600	2.981(5)	115.00	
C9-H9Cl1 ^a	0.9300	2.8000	3.691(4)	161.00	
Symmetry code: a = $-1/2+x$, $3/2-y$, $-1/2+z$; b = $1/2+x$, $3/2-y$, $-1/2+z$; c = x, y, $-1+z$; d = $-1/2+x$, $1/2+y$, z					

Fig. S1 ¹H NMR (400 MHz, DMSO-d₆) spectrum of H_2ppza .

Fig. S2 IR spectra of H₂ppza ligand and complexes 1–3 from 400 cm⁻¹ to 4000 cm⁻¹.

Fig. S3 Asymmetric unit of 1–3, drawn with displacement ellipsoids at 30% probability level.

Fig. S4 PXRD patterns of simulated and experimental crystals of complexes 1–3.

Fig. S5 (a) UV-Vis absorption spectra and (b) luminescence spectra of 10^{-5} M DMSO solutions of H₂ppza and its corresponding complexes 1–3.

Fig. S6 ECL intensity-time profile of blank electrode.

Fig. S7 Electrochemiluminescence for $Ru(bpy)_3^{2+}$.