Electronic Supplementary Information

Large-area Co(OH)₂ Nanoflower Array Films Decorated with Ag

Nanoparticles as Sensitive SERS Substrates

Tingting Fan, #a Yan Ke, #b Lijun Zhang, a Li Cai, *a Zhongbo Li*a

a. College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China.

b.Guangdong Provincial Key Laboratory of HighEnd Eco Dyeing and Finishing Technology, Guangdong Esquel T

extile Co. Ltd., Foshan, 528500, China. E-mail: keyancosb@163.com

* Correspondence: zbli@ahau.edu.cn, licai@ahau.edu.cn; Tel +86-551-65786737

These authors contributed equally to this work

Fig. S1 SEM images of PAN nanopillar

Fig. S2 Co(OH)₂ nanosheets synthesized with deposition current of 0.75 mA/cm² for 6 min.

Fig. S3 (a-b) TEM image of $Ag@Co(OH)_2$ nanoflowers broken off from the $Ag@Co(OH)_2$ nanoflower arrays shown in Fig. 3e.

Fig. S4 EDS spectrum of Ag@Co(OH)₂ nanoflower arrays shown in Fig. 3e.

Fig. S5 XRD of Ag@Co(OH)₂ nanoflower arrays shown in Fig. 3e.

Fig. S6 UV-vis spectra of Ag@Co(OH)₂ nanoflower arrays prepared with different Ag-sputtering durations.

Fig. S7 (a-c) SEM images of Co(OH)₂ nanoflower arrays prepared under different deposition currents for 9 min: (a-b) 0.5 mA/cm², (c-d) 0.75 mA/cm², (e-f) 1.0 mA/cm².

Fig. S8 Diameter of Co(OH)₂ nanoflowers obtained at different deposition durations (3-12 min). The error bars were obtained based on 40 independent measurements.

Fig. S9 SEM images of Ag NPs sputtered on corresponding $Co(OH)_2$ nanoflower arrays shown in

Fig. S7. The Ag-sputtering duration was set as 12 min.

Fig. S10 SERS spectra of 10-7 M R6G collected on Ag NPs sputtered on Co(OH)₂ nanoflower

Fig. S11 The linear relationship between the concentration of the thiram molecules and the SERS intensity at 1382 cm⁻¹. The error bars were obtained based on five independent measurements.

Part S2: Estimation of enhancement factor

The enhancement factor is calculated to verify the sensitivity of the substrate. The peak at 1078 cm⁻¹ (for 4-ATP molecules) was used to estimate the enhancement factor (EF). The EF can be calculated by the following equation:

$$EF = (I_{SERS} / I_{Ref}) \cdot (N_{Ref} / N_{SERS})$$

Where I_{SERS} and I_{Ref} represent the SERS intensity of 1 µL 10⁻⁹ M 4-ATP alcoholic solution dispersed on 25 mm² substrates and 1 µL 10⁻³ M 4-ATP ethanol solution on 28 mm² Si wafer, respectively; N_{SERS} and N_{Ref} represent the number of 4-ATP molecules exposed to the laser on the Ag@Co(OH)₂ substrates and Si wafer during the SERS measurement. Herein, a certain concentration (C_{SERS}) and volume (V_{SERS}) 4-ATP ethanol solution was dispersed to an area of S_{SERS} at the Ag@Co(OH)₂ substrates. For non-SERS Raman spectra, a certain volume (V_{Ref}) and concentration (C_{Ref}) 4-ATP ethanol solution was dispersed to an area of S_{Ref} at Si substrate. Both the substrates were dried in the air. Then the foregoing equation becomes:

$$EF = (I_{SERS} / I_{Ref}) \cdot (C_{Ref} V_{Ref}) / (C_{SERS} V_{SERS}) \cdot (S_{SERS} / S_{Ref})$$

According to the calculation, average enhancement factor for the band at 1078 cm⁻¹ is about 1.77 \times 10⁷.

Figure for estimation of enhancement factor:

Fig. S10 (a) Raman spectrum of 4-ATP obtained by dispersing 1 μ L 10⁻³ M 4-ATP alcoholic solution on 28 mm² Si wafer. (b) SERS spectrum of 1 μ L 10⁻⁹ M 4-ATP alcoholic solution dispersed on 25 mm² substrates. The exposure time was 60 s.