Supporting Information

For

MOF nanosheet-derived carbon-layer-coated $CoP/g-C_3N_4$ photocatalysts with enhance charge transfer for efficient photocatalytic H₂ generation

Yan Ma^a, Dianjun Chi^a, Yuping Tao^a, Shengjun Liu^{*a}, Lei Dong^a, Yu Chen^a, Lifang He^{*a} and Kui Zhang^a

School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China

*Corresponding authors:	Shengjun Liu, E-mail: lsj1990@mail.ustc.edu.cn.			
	Lifang	He,	E-mail:	lifanghe@ahut.edu.cn.

Figure S1. XRD patterns of Co-BDC nanosheets, $g-C_3N_4$ nanosheet and $g-C_3N_4/$ Co-

BDC nanosheet.

Figure S2. XRD patterns of CoP@C.

Figure S3. $(ahv)^2$ versus hv plot of g-C₃N₄, CoP@C and g-C₃N₄/CoP@C-200.

Figure S4. XPS survey spectrum of the $g-C_3N_4$.

Figure S5. XPS survey spectrum of the CoP@C.

Figure S6. XPS survey spectrum of the $g-C_3N_4/CoP@C$.

Figure S7. SEM of (a) bulk $g-C_3N_4$ and $g-C_3N_4$ nanosheet.

Figure S8. H₂ evolution of g-C₃N₄/CoP@C-200 under illumination (λ > 420 nm and λ > 600 nm).

Figure S9. XRD patterns of $g-C_3N_4/CoP@C-200$ before and after photocatalysis.

Figure S10. XPS spectra of $g-C_3N_4/CoP@C-200$ before and after photocatalysis. The similar peaks can be detected in the C 1s, Co 2p, N1s and P 2p spectra before and after photoreaction.

Figure S11. Mott–Schottky plots of g-C₃N₄.