1

Supporting Information

PdAu-based nanotheranostic agent for photothermal initiation and oxygen-independent free radicals generation

Feng Wang,^{ab} Zaoxia Sun,^c Zhuo Wang,^d Junxun Zhou,^e and Lining Sun*ab

^a Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China. E-mail: <u>lnsun@shu.edu.cn</u>

^b Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P.R. China.

^c Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P.R. China.

^d State Key Laboratory of Marine Resource Utilization in South China Sea, Special Glass Key Lab of Hainan Province, Hainan University, Haikou 570228, P.R. China.

^e Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, P.R. China.

Calculation of the Photothermal Conversion Efficiency

The photothermal conversion efficiency η of APPG nanocomposites was calculated according to the reported method^[1]. The detailed calculation was using the following eq 1:

$$\eta = \frac{hS(T_{max} - T_{surr}) - Q_{Di.}}{I(1 - 10^{-A_{808}})}$$
(1)

where *h* is heat transfer coefficient, *S* is the surface area of the container, T_{max} is the equilibrium temperature, T_{surr} is the ambient temperature of the surroundings. Q_{Dis} is heat losted from light absorbed of the container itself, which was measured independently containing pure water without AIPH-PAPG. And A_{808} is the absorption intensity of AIPH-PAPG at 808 nm. The value of *hS* is derived according to eq. 2:

$$\tau_s = \frac{m_D C_D}{hS} \tag{2}$$

where τ_s is the sample system time constant, m_D and C_D are the mass and heat capacity of ultrapure water used as the solvent, respectively.

And, τ_s can be calculated by eq. 3:

$$t = -\tau_s ln\theta \tag{3}$$

Time constant for heat transfer from the system is determined to be τ_s = 314.7 s applying to the linear time data from the cooling period (after 600 s) *vs* the negative natural logarithm of driving force temperature (Fig. 3c). Substituting the value of τ_s into eq 2, *hS* can be obtained. And the value of *hS* replaced into eq. 1, 808 nm photothermal conversion efficiency η of APPG nanocomposites can be calculated to be 24.6%.

Fig. S1 XRD pattern of PdAu alloy nanoparticles and the corresponding standard cards of Au (JCPDS 89-3697) and Pd (JCPDS 46-1043).

Fig. S2 TEM image of Gd-BSA complexes. (Inset: HRTEM image of Gd-BSA complexes)

Fig. S3 Photothermal curves of APPG nanocomposites aqueous dispersion (400 μ g·mL⁻¹) under varied power densities (0.5, 0.7, 1.0, and 1.5 W·cm⁻²).

Reference

[1] D. K. Roper, W. Ahn and M. Hoepfner, J. Phys. Chem. C, 2007, **111**, 3636-3641.