Supporting Information

Self-gelation involved in transformation from co-amorphous system of resveratrol and piperine into a co-crystal system

Jiawei Han^{‡ab}, Luyuan Li^{‡a}, Qian Yu^{‡a}, Daoyi Zheng^c, Yutong Song^c, Jianjun Zhang^c,

Yuan Gao^a, Weili Heng^a, Shuai Qian^{*a}, Zunting Pang^{*a}

^a School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198,

P.R., China

^b School of Pharmacy, Changzhou University, Changzhou, 213164, P.R., China

^c School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R., China

[‡] These authors contributed equally to this work.

Corresponding authors and address for reprint: * Corresponding authors Dr. Shuai Qian School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Tel.: +86 139 1595 7175; E-mail: silence_qs@163.com

Dr. Zunting Pang School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Tel.: +86 152 9577 1726; E-mail: 15295771726@163.com

Items	Co-crystal system	Co-amorphous system	
Solid form	Crystalline solid	Amorphous solid	
Malandan na dina	Periodic molecular	Long-range disorder molecular	
Molecular packing	arrangement	packing	
Components	Binary or multi-components		
Co-former	Small molecules (excipients or drugs)		
Intermolecular		Noncovalent interactions/No	
interactions	Noncovalent interactions	interaction	
Stoichiometric ratio	A certain stoichiometric ratio	A certain stoichiometric ratio	
Melting temperature	A single T	NI/A	
(T _m)	A single 1 _m	N/A	
Glass transition		A single T _g	
temperature (Tg)	IN/A		
Thermodynamics	Low-energy state	High-energy state	
Solubility	Improvement (depending on the nature of co-former)		
Dissolution	Improvement (depending on the nature of co-former)		

1 Table S1 Comparisons between co-crystal and co-amorphous systems

N/A = not available.

4 1. Preparation of RES-PIP CM and RES-PIP CC

6 Fig. S1 TGA charts of crystalline RES and crystalline PIP.

7

5

8 Fig. S2 XRPD diffractograms of the prepared product with molar ratios (RES/PIP) of

9 1:2, 1:3 and 1:4 by quench cooling.

12 Fig. S3 TGA chart of RES-PIP CC.

13

14 2. Determination of drug content in RES-PIP CM and RES-PIP CC

15 The analysis was conducted on the LC-2010A HPLC analysis system (Shimadzu Co.,

16 Ltd., Tokyo, Japan) with an Ultimate C18 column (5 μ m, 250 mm × 4.6 mm) at 35 °C.

17 The mobile phase (50:50, acetonitrile to 0.3% phosphoric acid solution) was pumped

18 up at 1 mL/min for 15 min. RES and PIP were detected at 306 and 342 nm, respectively.

19 The retention time of RES and PIP were 3.5 min and 12.6 min, respectively. The

20 calibration curves were linear over a range of 0.23-120.0 µg/mL for RES and 0.89-

21 56.75 μ g/mL for PIP, with the correlation coefficients of around 0.999.

23 3. DSC analysis

- 26 using differential scanning calorimetry.

Table S2 The predicted and experimental T_g of the RES-PIP CM system.

Sample	Weight fraction	Experimental Tg, °C	Calculated Tg, °C	ΔT_{g} , °C
Amorphous RES	0.21	55.13	/	/
Amorphous PIP	0.79	15.34	/	/
RES-PIP CM	/	32.66	18.08	14.58

30 4. Crystal structure solution and refinement

Fig. S5 The measured X-ray powder diffraction patterns (blue), Rietveld refinements
(red) and underneath the difference curves (black) of RES-PIP CC. The green tick
marks indicated reflection positions.

35

36

37 Fig. S6 Comparison of experimental and simulated patterns of RES-PIP CC.

- 40 Fig. S7 The simulated structure of RES-PIP CC.

Table S3 Crystallographic data of RES-PIP CC.

Parameters	RES-PIP CC		
Formula	$(C_{14}H_{12}O_3)\cdot 3(C_{17}H_{19}NO_3)$		
Space group	Pī		
Crystal system	Triclinic		
a(Å)	14.2960		
$b(\text{\AA})$	10.0719		
c(Å)	23.7853		
α(°)	84.8598		
$\beta(^{\circ})$	112.3810		
γ(°)	105.4870		
Volume (Å ³)	3051.56		
$R_{wp}\%$	7.96%		

Table S4 Hydrogen bond parameters for RES-PIP CC.

D-H…A	D…A/Å	H…A/Å	D-H···A/º
О7-Н (RES)…O15 (PIP)	2.987	2.378	121.831
O17-H (RES)…N16 (PIP)	2.825	2.047	138.243

45 5. Polarizing light microscopy (PLM) and scanning electron microscopy (SEM)
46 Methods

47 5.1. PLM

A small amount of sample including crystalline RES, crystalline PIP, RES-PIP CM and
RES-PIP CC was placed on a glass slide and dispersed with liquid paraffin. The surface
morphology and birefringence phenomenon were observed and recorded by PLM
(Eclipse Ci-POL, Nikon Ltd., Tokyo, Japan) under 10 × 20 times magnification. *5.2. SEM*

The surface morphology of crystalline RES, crystalline PIP, RES-PIP CM and RES-PIP CC was observed by a SEM system (GeminiSEM 360, ZEISS Ltd., Jena, Germany). The sample was coated with a thin layer of gold and fixed on an SEM stub before observation. The SEM system was operated with probe current of 9400 nA, accelerating voltage of 3 kV, and counting time of 60 s, respectively. Furthermore, the gel formed from RES-PIP CM was also inspected by SEM to obtain its surface structure.

60 Results and discussion

61 PLM observation was conducted to analyze the morphology and birefringence behavior 62 of the samples. Crystalline RES and crystalline PIP exhibited long flake state and 63 irregular sphericity with obvious crystal birefringence, respectively (Fig. S8A & B). In 64 contrast, the RES-PIP CM showed irregular block shapes without the birefringence 65 phenomenon, indicating a complete amorphousness (Fig. S8C). While, RES-PIP CC 66 appeared a regular long block or flake and visual crystal birefringence (Fig. S8D). Furthermore, SEM was further applied to detect particle morphology after coamorphization and co-crystallization. Similar to PLM observation, the micrograph of
crystalline RES showed a long flake or columnar-like crystal shape (Fig. S8E), and
crystalline PIP exhibited an ellipsoid or spherical state with rough surface (Fig. S8F).
However, RES-PIP CM displayed irregularly lumpy or granular shapes after coamorphization (Fig. S8G). For RES-PIP CC, it showed a regular long block shape after
co-crystallization (Fig. S8H).

74

75 Fig. S8 PLM and SEM images of (A, E) crystalline RES, (B, F) crystalline PIP, (C, G)

76 RES-PIP CM and (D, H) RES-PIP CC.

77 6. Ss ¹³C NMR analysis

Compound	Carbon Number	Chemical shift (ppm)	
	1, 3	156.10	
	14	154.07	
	5	138.93	
	12, 16	133.40	
RES	11	129.30	
	9, 10	125.40	
	13, 15	117.47	
	4, 6	110.62	
	2	102.70	
	14	164.01	
	4, 5	148.86	
	12	142.00	
	10	135.98	
	7	131.33	
תות	11	125.62	
PIP	8, 13	119.59	
	9	107.30	
	6	104.82	
	2	102.88	
	17, 21	43.87	
	18, 19, 20	25.73	

Table S5 Resonance assignments of RES and PIP in ¹³C NMR spectra in solid state.

80 7. Transformation from RES-PIP CM to RES-PIP CC

81

82 Fig. S9 PLM photographs of samples collected during dissolution of RES-PIP CM at

83 different time.

84

85

86 Fig. S10 FTIR spectra of RES-PIP CM and RES-PIP CC.

89 Fig. S11 Dissolution phenomena of RES-PIP CM at (a) 25, (b) 50, (c)100, (d) 150 and

- 90 (e) 200 rpm.
- 91

92 8. Binding energy calculation between components

93 Methods

Molecular dynamics (MD) simulation was used to calculate the binding energy (E_{bind}) between components (including RES/RES, PIP/PIP and RES/PIIP) and further explore such transformation mechanism. E_{bind} is defined as the intermolecular interaction energy between different components. E_{bind} obtained from MD simulation has been widely used to evaluate the interaction of components, especially in the field of cocrystal explosives.¹⁻⁵

100 The geometric structures of RES molecule and PIP molecule were optimized by Forcite module with the COMPASS II force field using Materials Studio software 101 (version 2019, BIOVIA) to achieve the minimized energy structures.^{6, 7} Amorphous 102 cells of RES and PIP were established based on the molar ratios of RES-PIP CM and 103 their respective densities (1.410 g/cm³ for RES and 1.303 g/cm³ for PIP) from 104 Cambridge Crystallographic Data Centre. Next, the layered model of RES/PIP was 105 built using RES amorphous cell as the first layer and PIP amorphous cell as the second 106 layer. Similarly, the layered models of RES/RES and PIP/PIP were also established 107 based on their respective amorphous cells. After the layered models were optimized to 108 minimize the energy, COMPASS II force field and NPT ensemble were selected for 109 MD simulation, and Andersen thermostat was selected for the temperature control. 110 Meanwhile, the van der Waals force was simulated according to the Atom Based 111 method, and the Electrostatic process is calculated with Ewald.^{3, 6-8} The total simulation 112 113 time was 200 ps and the time step was 1 fs. The temperature was set as 298 K, 310 K and 318 K, respectively. Finally, the equilibrium layered structures of RES/PIP,
RES/RES and PIP/PIP at different temperatures could be obtained to calculate the E_{bind}
between components.

117 The E_{bind} was depicted as follows, and the greater the E_{bind} , the stronger the 118 interaction of components.⁶⁻⁸

119
$$E_{bind} = -E_{inter} = -[E_{total} - (E_{layer(1)} + E_{layer(2)})]$$

Where E_{bind} is the binding energy of system, E_{inter} is the interaction energy between molecules, E_{total} is the total energy of the whole equilibrium structure, $E_{layer(1)}$ and $E_{layer(2)}$ represent the total energy of the first layer and the second layer, respectively.

123

124 Results and discussion

MD simulation was conducted to study the dynamic parameters and structural 125 properties of the RES-PIP system, in order to explore the transformation mechanism 126 from RES-PIP CM to RES-PIP CC. The stable structure is formed by the strong 127 intermolecular interactions (especially intermolecular hydrogen bonds) between 128 components in co-amorphous system. The MD methods were used to build the 129 amorphous cell models of RES and PIP (Fig. S12), the layered models of RES/RES, 130 PIP/PIP and RES/PIP were constructed using RES amorphous cell and PIP amorphous 131 cell (Fig. S13), and the layered structures were optimized and run by MD simulation at 132 different temperatures to obtain the equilibrium structures (Fig. S14-S16). On this basis, 133 the binding energy (E_{bind}) of RES/RES, PIP/PIP and RES/PIP was calculated in Table 134 S6. The E_{bind} reflects the strength of intermolecular interactions between components.⁶⁻⁸ 135

The greater E_{bind} means the stronger interactions and the more stable internal structure of the system. According to the analysis of MD simulation, the E_{bind} between RES and PIP in the RES-PIP CM system at 298 K, 310 K and 318 K was approximately 1190 kcal/mol, 1124 kcal/mol and 1093 kcal/mol, respectively, which were significantly greater (p < 0.01) than those between the single components (i.e., RES/RES, PIP/PIP), indicating that the strongest intermolecular interactions between RES and PIP than those of the same components.

144

145 **Fig. S12** Amorphous cells of (A) RES molecules and (B) PIP molecules.

148 Fig. S13 The initial layered structures of (A) RES/RES, (B) PIP/PIP and (C) RES/PIP

149 built by amorphous cells.

150

147

151

152 Fig. S14 Equilibrium layered structures of (A) RES/RES, (B) PIP/PIP and (C) RES/PIP

153 at 298 K.

156 Fig. S15 Equilibrium layered structures of (A) RES/RES, (B) PIP/PIP and (C) RES/PIP

157 at 310 K.

158

155

159

- 160 Fig. S16 Equilibrium layered structures of (A) RES/RES, (B) PIP/PIP and (C) RES/PIP
- 161 at 318 K.

162

Temperature	Sample	Total energy/(kcal/mol)	Layer (1)/(kcal/mol)	Layer (2)/(kcal/mol)	E _{bind} /(kcal/mol)
	RES/RES	-1295.560	-587.151	-602.357	106.052
298 K	PIP/PIP	7344.348	3714.363	3741.760	111.775
	RES/PIP	3073.013	-417.476	4680.588	1190.099**##
310 K	RES/RES	-1123.203	-528.525	-522.126	72.552
	PIP/PIP	7767.039	3983.376	4003.341	219.678
	RES/PIP	3375.837	-337.898	4837.386	1123.651**##
318 K	RES/RES	-1070.777	-493.796	-491.618	85.363
	PIP/PIP	8055.663	4183.959	4150.548	278.844
	RES/PIP	3549.504	-299.958	4942.671	1093.209**##

164 Table S6 Binding energy (E_{bind}) between components in the RES-PIP CM system at

166 p < 0.05, p < 0.05, p < 0.01, compared to RES/RES. p < 0.05, p < 0.01, compared to PIP/PIP.

167

169 Fig. S17 Proposed schematic diagram of transformation from RES-PIP CM to RES-

¹⁷⁰ PIP CC during dissolution process.

171 References

- B. H. Duan, Y. J. Shu, N. Liu, Y. Y. Lu, B. Z. Wang, X. M. Lu and J. Q. Zhang, *Rsc Adv.*,
 2018, 8, 34690-34698.
- G. Y. Hang, J. T. Wang, T. Wang, H. M. Shen, W. L. Yu and R. Q. Shen, *J. Mol. Model.*,
 2022, 28, 58.
- 176 3. G. Y. Hang, W. L. Yu, T. Wang and J. T. Wang, J. Mol. Model., 2019, 25, 10.
- 177 4. G. Y. Hang, W. L. Yu, T. Wang, J. T. Wang and Z. Li, J. Mol. Struct., 2017, 1141, 577-583.
- 178 5. X. Zhao, X. Fu, G. Zhang, X. Liu and X. Fan, *ACS omega*, 2022, 7, 7361-7369.
- 179 6. X. J. Wang and J. J. Xiao, Struct. Chem., 2017, 28, 1645-1651.
- S. L. Xiong, S. S. Chen, S. H. Jin, Z. Zhang, Y. Zhang and L. J. Li, *Rsc Adv.*, 2017, 7, 6795 6799.
- 182 8. K. P. Song, F. D. Ren, S. H. Zhang and W. J. Shi, J. Mol. Model., 2016, 22, 249.