Supporting information

Enhancing ORR Activity of Fullerene-Derived Carbons by Implanting Fe in Assembled Diamine-C₆₀ Spheres

Bohong Jiang,^{a#} Suwei Wang,^{b#} Fancang Meng,^a Li Ju,^a Wei Jiang,^b* Qingmin Ji,^a* Heng-Dao Quan^c

¹ Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China

² National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China

³ School of Chemistry and Chemical Engineering, Beijing Institute of Technology,
5 South Zhongguancun Street, Beijing 1000081, China

These authors contributed this work equally

*Corresponding author: jiqingmin@njust.edu.cn, superfine_jw@126.com

Additional Data

Fig. S1. SEM images of fullerene assembly structures at various mixing ratios of C_{60} and EDA, (a) C_{60} : EDA = 1:100, (b) C_{60} : EDA = 1:5000.

Fig. S2. SEM images of (a) N@FCS-500, (b) N@FCS-700, (c) N@FCS-900, (d) FeN@FCS-500 and (e) FeN@FCS-700.

Fig. S3. The image of mixed elemental mappings of FeN@FCS-900 based on STEM

observation and EDS analysis.

Fig. S4. HR-TEM image of FeN@FCS-900.

Fig. S5. (a) Nitrogen isotherms and (b) pore size distributions of (i) FeN@FCS-900 and (ii) N@FCS-900.

Fig. S6. Full-scan XPS spectra of (a) N@FCS-900 and (b) FeN@FCS-900.

Fig. S7. LSV curves of (i) N@FCS-500, (ii) N@FCS-700, (iii) FeN@FCS-500 and (iv)

FeN@FCS-700 in O2-saturated 0.1 M KOH solution at 1600 rpm.

Fig. S8. CV curves of N@FCS-900 measured at scan rate of 10 mV·s⁻¹ in (i) N₂-saturated 0.1M KOH solution, and (ii) O₂-saturated 0.1M KOH solution.

Fig. S9. The electron transfer number (n) and $H_2O_2\%$ yield of (i) C_{60} -900 and (ii) N@FCS-900.

Fig. S10. CV curves of (a) FeN@FCS-900 and (b) N@FCS-900 measured in a non-

Faradic region at different scan rates.

Fig. S11. Nyquist plots of (i) FeN@FCS-900, (ii) Pt/C, (iii) N@FCS-900.

Fig. S12. LSV curves of (a) FeN@FCS-900, (b) N@FCS-900, (c) C₆₀-900, (d) Pt/C in O₂-saturated 0.1 M KOH solution at 1600 rpm; (i) before and (ii) after 5000 potential cycles.

Fig. S13. Chronoamperometric response plots of (a) FeN@FCS-900 and (b) Pt/C in O_2 -saturated 0.1M KOH solution.

Fig. S14. TEM image of FeN@FCS-900 after the ORR process.

Fig. S15. (a) Fe 2p spectra and (b) N 1s spectra of FeN@FCS-900 (i) before and (ii) after the ORR process.

Sample name	Eonset (V)	$E_{1/2}(V)$	<i>j</i> L (mA)	Ref.
FeN@FCS-900	0.93	0.78	4.2	This work
L-FeNC	0.97	0.89	5.2	R1
M15-FeNC-NH ₃	0.88	0.78	6.14	R2
SC-Fe	0.96	0.87	5.7	R3
Co@NCNTs	1.01	0.87	5.8	R4
Cu(15%)-MFC60	0.86	0.76	5.18	R5
FMN700	0.93	0.81	4.7	R6
Fe-MFC ₆₀	0.85	0.78	3	R7
N,S-PCNFs	0.96	0.83	5.50	R8
MFC ₆₀ -130	0.82	0.76	2.7	R9
MFC ₇₀ -150	0.86	0.75	5.5	R10
PD- C ₆₀	0.89	0.78	4.8	R11

Table S1. The comparison of the ORR performance with various reported metal-

Reference in Table S1.

doped carbon materials.

- R1. X. Jiang, J. Chen, F. Lyu, C. Cheng, Q. Zhong, X. Wang, A. Mahsud, L. Zhang and Q. Zhang, J. Energy Chem., 2021, 59, 482-491.
- R2. X. Xu, X. Zhang, Z. Xia, R. Sun, H. Li, J. Wang, S. Yu, S. Wang and G. Sun, J. Energy Chem., 2021, 54, 579-586.
- R3. J. Xie, B. Q. Li, H. J. Peng, Y. W. Song, J. X. Li, Z. W. Zhang and Q. Zhang, *Angew. Chem., Int. Ed.*, 2019, **131**, 5017-5021.
- R4. S. Chao, P. Liu, Q. Xia, S. Liu, W. Chen, W. Li and T. Ni, *CrystEngComm*, 2021, 23, 1671-1676.

- R5. G. Saianand, A. I. Gopalan, J. C. Lee, C. Sathish, K. Gopalakrishnan, G. E. Unni,D. Shanbhag, V. D. Dasireddy, J. Yi and S. Xi, *Small*, 2020, 16, 1903937.
- R6. Z. Peng, Q. Jiang, P. Peng and F.-F. Li, Eng. Sci., 2021, 14, 27-38.
- R7. M. R. Benzigar, S. Joseph, G. Saianand, A.-I. Gopalan, S. Sarkar, S. Srinivasan,
 D.-H. Park, S. Kim, S. N. Talapaneni and K. Ramadass, *Microporous Mesoporous Mater.*, 2019, 285, 21-31.
- R8. Z. He, P. Wei, N. Chen, J. Han and X. Lu, Chem.-Eur. J., 2021, 27, 1423-1429.
- R9. M. R. Benzigar, S. Joseph, H. Ilbeygi, D. H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S. N. Talapaneni and A. Vinu, *Angew. Chem., Int. Ed.*, 2018, 57, 569-573.
- R10. M. R. Benzigar, S. Joseph, A. V. Baskar, D. H. Park, G. Chandra, S. Umapathy,S. N. Talapaneni and A. Vinu, *Adv. Funct. Mater.*, 2018, 28, 1803701.
- R11. J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I. S. Amiinu and S. Mu, Angew. Chem., Int. Ed., 2019, 58, 3859-3864.