Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting information

Polymorphs and Isostructural Cocrystals of Dexamethasone: Towards the improvement of aqueous solubility

Richu Bagya Varsa S^a, Palash Sanphui,*^a Vladimir Chernyshev*^{b,c}

^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India. E-mail: palashi@srmist.edu.in

^bDepartment of Chemistry, M. V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russian Federation. E-mail: vladimir@struct.chem.msu.ru

^cA. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31 Leninsky Prospect, Moscow 119071, Russian Federation

Table of contents

1. Table S1. Hydrogen bond geometry
2. Table S2. Summary of the reported steroid cocrystals/salts structure
3. Fig. S1. Polarized microscope images of DEX concomitant polymorphs
4. Fig. S2. TGA endotherms of DEX–CAT and DEX–RES cocrystals
4. Fig. S3. Packing differences between Forms A and B
5. Fig. S4. Overlay of molecular conformations of DEX polymorphs
6. Fig. S5. The Rietveld plots of (a) DEX–CAT and (b) DEX–RES cocrystals
7. Fig. S6. 3D packing view of (a) DEX–CAT and (b) DEX–RES cocrystals
8. Fig. S7. X-ray powder pattern of (a) DEX+ORC, (b) DEX+PYR, (c) DEX+PGL ground mixture.
9. Fig. S8. H-bonding aspects of (a) progesterone-resorcinol (refcode-PRORES), (b) DEX-RES
10. Fig. S9. UV absorbance spectra of the DEX Forms A/B and DEX-CAT/RES cocrystals
11. Fig. S10. XRD comparison of DEX–CAT/RES cocrystals following 2h dissolution
12. Fig. S11. XRD comparison of DEX–CAT/RES cocrystals under humidity conditions

DEX (Form	D–Н···A	D-H/ Å	H····A/Å	D…A/Å	D-H···A/°	Symmetry code
	O 2–H2…O1	0.82	2.17	2.6395(2)	116	Intramolecular
	O3–H3…O5	0.82	2.17	2.9383(2)	155	x,1+y,z
	O4–H4…O2	0.82	2.19	3.0076(2)	146	-x,-1/2+y,1/2-z
	C18–H18B…O4	0.96	2.24	2.8762(2)	123	Intramolecular
DEX (Form B)	O1–H1…O10	0.82	2.15	2.9366(3)	160	3/2-x,1-y,-1/2+z
	O4–H13…O9	0.82	2.07	2.8230(3)	153	1/2+x,1/2-y,-z
	O6–H30····O3	0.82	1.99	2.7821(3)	163	3/2-x,1-y,-1/2+z
	O8–H36…O2	0.82	2.02	2.8138(3)	163	-1/2+x,1/2-y,-z
	С17–Н17…О10	0.97	2.49	3.2999(3)	141	3/2-x,1-y,-1/2+z
	С21–Н26…О7	0.96	2.54	3.4414(3)	156	1+x,y,z
	С39–Н48…О3	0.97	2.52	3.3143(3)	139	3/2-x,1-y,-1/2+z
DEX-CAT	O3–H3…O5	0.82	2.07	2.8475(4)	158	x,y,-1+z
	О6–Н6…О7	0.82	2.21	2.9416(4)	149	1-x,1/2+y,1-z
	07–Н7…О2	0.82	1.81	2.5987(3	162	1-x,-1/2+y,-z
	O2–H2…O1	0.82	2.14	2.6277(3)	118	Intramolecular
DEX-RES	O3–H3…O5	0.82	2.26	3.0598(4)	164	x,y,1+z
	O6–H6…O6	0.82	2.58	3.2285(4)	137	-x,1/2+y,1-z
	07–Н7…О2	0.82	2.20	3.0111(4)	168	x,-1+y,z
	С5–Н5А…О5	0.96	2.46	2.8623(4)	105	x,y,1+z
	С5–Н15А…О5	0.97	2.60	3.5411(5)	163	1-x,-1/2+y,-z
	C24–H24…O2	0.93	2.47	3.2569(4)	142	x,-1+y,z

Table S1. Hydrogen bond geometry (Å, °)

	С26–Н26…О7	0.93	2.34	3.1443(4)	144	-x,1/2+y,2-z

		C26–H26…O7	0.93	2.34	3.1443(4)	144	-x,1/2+
--	--	------------	------	------	-----------	-----	---------

Sl. No	Steroid	Coformer used with CCDC refcodes/nos	References
1.	Nandrolone	Salicylic acid (LUYHAR), 3-Amino-1,2,4-Triazole (LUYHEV)	Iqbal et al., J. Mol. Struc. 2021, 1224, 128981. DOI: 10.1016/j.molstruc.2020.128981
2.	Diosgenin	Piperazine (PACVEY)	Gong et al., Natural Products and Bioprospecting 2020, 10, 261–267. DOI: 10.1007/s13659-020-00256-y
3.	Cholic acid	Melamine (TALDIV)	Ikonen et al., CrystEngComm 2010, 12, 4304. DOI: 10.1039/c0ce00108b
4.	Stanozolol	Malonic acid (VOPCOU), Phenylacetic Acid (VOPFAJ), 6-Hydroxy-2-Naphthoic Acid (VOPCUA).	Norberg et al., Cryst. Growth Des. 2014, 14, 7, 3408–3422 DOI: 10.1021/cg500358h
		Saccharin (salt/EYAYOU), Acesulfame (salt/EYAYUA)	Kong et al., CrystEngComm, 2016,18, 8739-8746 DOI: 10.1039/C6CE01876A
		2,5-dihydroxybenzoic acid (JIWJEH), 2,6- dihydroxybenzoic acid (salt/JIWJAD), Phthalic Acid (JIWJIL), Gallic acid (salt/JIWJAD).	Wang et al., CrystEngComm, 2019, 21, 2144 DOI: 10.1039/c8ce01439f
5.	Estradiol	Benzoquinoline (RUFYIC), 1,2-Dimethylnaphthalene (RUFYOI), Phenanthrene (RUGYID) Pyrene (CUTBEZ) Urea (ESOURE10) Isonicotinamide (ULUFIS) Piperazine (ULUFOY) Perfluoronaphthalene (RUGYEZ)	Ardila-Fierro et al. Cryst. Growth & Des. 2015, 15, 1492-1501. DOI: 10.1021/cg501865h
6	Ethinyl estradiol	Nicotinamide, Piperazine, Tetramethylpyrazine, 4,4'-bipyridine Imidazole (CCDC nos 1938507-11)	Du et al., New J. Chem., 2019, 43, 16889- 16897 DOI: 10.1039/C9NJ04147H
7	Estradiol	Urea (ESOURE10)	Duax et al. Acta Cryst. B, 1972, 28, 1864- 1871, DOI: 10.1107/S0567740872005151

		Acetamide (CCDC no:	Gong e al Zeitschrift für
		1010680)	Kristallographia Now Crystal Structures
		1910080)	2020 225 21 24
			2020, 253, 51-54.
			DOI: 10.1515/ncrs-2019-0451
		Isonicotinamide (ULUFIS))	Wang et al., CrystEngComm, 2016,18,
		Piperazine (ULUFOY)	3498-3505
			DOI: 10.1039/C6CE00433D
8	Progesteron	9-phenanthrol (CUSZAS),	Friscic et al., Proc. Nat. Acad. Sci. USA
	e	Gentisic acid (CUSZIA),	2010, 107, 13216, DOI:
		2,7-dihydroxynapthalene	10.1073/pnas.0915142107
		(CUSZEW), 4-bromophenol	
		(CUSYOF)	
		4-hydroxybenzoic acid (CCDC	Samipillai et al., J. Crystal Growth 2019.
		nos 1571644-5)	507 270-282
			DOI: 10.1016/j.jcrysgro.2018.10.050
		Phloroglucipol	$\begin{array}{c} \text{Dot. 10.1010, j.j.org} \text{Sg10.2010, 10.000} \\ \text{Guo at al. Cryst. Growth Dec. 2020, 20} \end{array}$
		(VIIKOA7/VIIKVA7)	3053 3063
		Perversited (VUKOED)	DOI: 10.1021/acs.cgd.0b01688
		Hudroquinona (KEEDEC)	Coldeaki et al. I. Crystellagr. Spectrose
		Hydroquinone (KEFBEC)	Dardecki et al., J. Crystallogi. Specifosc.
			Res., 1989, 19, 983-991. DOI:
			10.100//BF01160880
		Resorcinol (PRORES)	Dideberg et al., Acta Crystallogr., 1975,
			B31, 637-640, DOI:
			10.1107/S0567740875003524
		Pregnenolone (TIPMAH)	Lancaster et al., J. Pharm. Sci., 2007, 96,
			3419-3431. DOI: 10.1002/jps.20983
9	Pregnenolon	4-iodophenol (WOMGOV)	Bhatt et al., CrystEngComm 2008, 10,
	e	2,4,6-trichlorophenol (CCDC	1747-1749. DOI: 10.1039/B810643F
		687158)	
		2-Napththol (CUTBAV)	Friscic et al., Proc. Nat. Acad. Sci. USA
		4-bromophenol (CUTBOJ)	2010. 107. 13216. DOI:
			10.1073/pnas.0915142107
10	Cholesterol	4-jodophenol (WOMHAI)	Bhatt et al CrystEngComm 2008 10
10	Choicsteror		1747-1749 DOI: 10.1039/B810643F
11	B_sitesterol	Propionic acid	Barbas et al CrystEngComm 2020 22
11	p-sitosteror	Zymonia agid	
		Colling and (ZUOION)	-4210-4214
		dame acid (ZUQJON),	DOI: 10.1039/DOCE00/04H
		4-nydroxybenzoic acid,	
		3,4-dihydroxybenzoic acid.	
12	Exemestane	1-hydroxypyrene	Tonić et al. Canadian I. Chem. 2020. 98
14		(KURBUX/KURCAE)	386_303
		0 hydroxyphononthrono	DOI: 10.1130/cia 2020.0072
		(VUDDOD)	DOI. 10.1159/0j0-2020-00/5
		This (CCDC 107001)	Estime at al. HIGH 2000, 7, 105, 110
		Iniourea (CCDC nos 1970916 -	Fatima et al., IUCrJ 2020, 7, 105-112
		[7]	DOI: 10.1107/S2052252519016142

		Maleic acid (HORNAE),	Shiraki et al., Pharm. Res. 2008, 25, 2581–
13	Megestrol	Saccharin (HORNEI)	2592. DOI: 10.1007/s11095-008-9676-2
	acetate		

Fig. S2. TGA data of (a) DEX–CAT and (b) DEX–RES cocrystals confirmed the possible thermal degradation.

Fig. S3. Packing differences between Form A and B. Form A maintains AABB patterns, whereas Form B maintains ABAB patterns of DEX chains viewed down the *a* axis. The direction of arrow is assumed starting from carbonyl towards terminal OH groups as **A**, wherein opposite arrow is assumed as **B**.

Fig. S4. Overlay of molecular conformations of DEX (three) symmetry independent molecules in two forms A/B that indicates no conformational flexibility even in the presence of eight chiral centers and four aliphatic cyclic rings.

Fig. S5. The Rietveld plot after the final bond-restrained refinement for (a) DEX–CAT and (b) DEX–RES cocrystals showing the experimental and difference diffraction profiles as black (top) and red (bottom) curves, respectively. The vertical blue bars correspond to the calculated positions of the Bragg peaks.

Note: In the final bond-restrained Rietveld refinement of DEX–RES, two crystalline phases were taken into account, namely, DEX–RES and DEX (Form A). For DEX Form A, the atomic coordinates were fixed to the known values (CCDC deposition 2118348). For DEX–RES, except for the atomic coordinates only two independent *Uiso* values for non-H atoms were refined – one common *Uiso* for DEX molecule, another one for RES molecule. H atoms were placed in calculated positions and not refined. The experimental and calculated diffraction profiles after the final two-phase bond-restrained Rietveld refinement are shown in Fig. S5b [in the Legend - The vertical blue bars correspond to the calculated positions of the Bragg peaks for two crystalline phases - DEX–RES (1st raw) and DEX-Form A (2nd raw)]. The content of DEX (Form A) in the DEX–RES sample was estimated as approx. 7%.

Fig. S6. 3D packing view of (a) DEX–CAT and (b) DEX–RES cocrystals down the *b* axis indicate DEX molecule arranged in an alternate fashion (ABAB), which is similar to DEX Form B.

(a)

(b)

Fig. S7. X-ray powder pattern of (a) DEX-ORC, (b) DEX-PYR, (c) DEX-PGL suggest that there are twophase sample of either DEX Form A or Form B (DEXMET11) and PYR/PGL hydrate (PHGLOH04).

Fig. S8. Hydrogen bonding aspects of (a) progesterone-resorcinol (refcode-PRORES), (b) DEX-RES cocrystals.

Fig. S9. UV absorbance spectra of the DEX Forms A/B and DEX-CAT/RES cocrystals that showed the negligible interference in the UV region of 241 nm, where the drug is absorbed.

(a)

Fig. S10. XRD comparison of (a) DEX–CAT and (b) DEX–RES cocrystals (following 2h dissolution studies) that indicated the possible transformation to the mixture of polymorphs

(a)

Fig. S11. XRD comparison of (a) DEX–CAT and (b) DEX–RES cocrystals stored at 35±5 °C and 75% relative humidity that showed partial transformation to DEX Form after 2-4 weeks.