## Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

## Halogen-induced Core Structural Evolution of Four Dinuclear Copper(I) Luminescent Coordination Compounds

Na Li,<sup>a</sup> Chunhong Tan,<sup>\*a,b</sup> Yi Feng,<sup>a</sup> Lu Cheng,<sup>a</sup> Meng Cao,<sup>a</sup> Yunkai Sun<sup>\*c</sup> and Xiao-Feng Wang<sup>\*a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan, P. R. China, E-mail: xfwang518@sina.cn

<sup>b</sup>State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China, E-mail: 2015002077@usc.edu.cn

<sup>c</sup>School of Chemistry and Materials Science, Changzhou Institute of Technology, Changzhou, 213022, Jiangsu, P. R. China, <u>sunyunkai1983@163.com</u>

| Complex                    | 1a                              | 2a                                                                                               | 2b                           | 3b                          |
|----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
| Formula                    | $C_{51}H_{44}N_3Cl_2O_5P_3Cu_2$ | C <sub>51</sub> H <sub>42</sub> N <sub>3</sub> ClBrO <sub>4</sub> P <sub>3</sub> Cu <sub>2</sub> | $C_{51}H_{42}N_3Br_2P_3Cu_2$ | $C_{51}H_{42}N_3I_2P_3Cu_2$ |
| Mr                         | 1069.78                         | 1096.22                                                                                          | 1076.68                      | 1170.66                     |
| Cryst system               | trigonal                        | trigonal                                                                                         | monoclinic                   | triclinic                   |
| Space group                | <i>P</i> -3 <i>c</i> 1          | <i>P</i> -3 <i>m</i> 1                                                                           | $P2_1/n$                     | <i>P</i> -1                 |
| a/Å                        | 13(3)                           | 12.803(9)                                                                                        | 14.256(9)                    | 13.615(5)                   |
| b/Å                        | 13(3)                           | 12.803(9)                                                                                        | 18.240(1)                    | 13.933(7)                   |
| c/Å                        | 39(4)                           | 19.257(2)                                                                                        | 17.675(1)                    | 15.790(6)                   |
| $\alpha^{/\circ}$          | 90.000                          | 90.000                                                                                           | 90                           | 103.40(2)                   |
| $\beta^{\circ}$            | 90.000                          | 90.000                                                                                           | 98.596(1)                    | 102.005(2)                  |
| $\gamma/^{\circ}$          | 120.00                          | 120.000                                                                                          | 90                           | 117.440(2)                  |
| $V/Å^3$                    | 5708(5)                         | 2733(2)                                                                                          | 4544(5)                      | 2407.7(2)                   |
| Ζ                          | 4                               | 2                                                                                                | 4                            | 2                           |
| $D_{\rm c}/{ m g~cm^{-3}}$ | 1.219                           | 1.332                                                                                            | 1.574                        | 1.615                       |
| $\mu/\mathrm{mm}^{-1}$     | 0.945                           | 1.688                                                                                            | 2.840                        | 2.303                       |
| F(000)                     | 2144                            | 1112                                                                                             | 2168                         | 1156                        |
| R(int)                     | 0.0613                          | 0.0675                                                                                           | 0.0519                       | 0.0427                      |
| Total reflections          | 17180                           | 21482                                                                                            | 34734                        | 18618                       |
| Unique reflections         | 3660                            | 2356                                                                                             | 10258                        | 10792                       |
| $I > 2\sigma(I)$           | 2050                            | 1986                                                                                             | 7462                         | 7023                        |
| $R_1$                      | 0.0930                          | 0.0559                                                                                           | 0.0497                       | 0.0592                      |
| $wR_2$                     | 0.3235                          | 0.1384                                                                                           | 0.1078                       | 0.1625                      |
| S                          | 1.096                           | 1.136                                                                                            | 1.050                        | 1.077                       |

 Table S1. Crystallographic data for complexes 1a-3b.

| bond distances        |            |                    |           |
|-----------------------|------------|--------------------|-----------|
| Cu(2)-N(1)            | 1.992(6)   | Cu(1)-Cl(2)        | 2.304(2)  |
| Cu(2)-Cu(1)           | 2.782(2)   | Cu(1)-P(1)         | 2.324 (2) |
|                       | angles     |                    |           |
| N(1)#1-Cu(2)-N(1)#2   | 61.9(3)    | P(1)#1-Cu(1)-Cu(2) | 75.21(3)  |
| N(1)#1-Cu(2)-N(1)     | 116.94(9)  | C(1)-N(1)-Cu(2)    | 119.7(5)  |
| N(1)#2-Cu(2)-N(1)     | 56.0(3)    | C(5)-N(1)-Cu(2)    | 121.5(5)  |
| N(1)#1-Cu(2)-N(1)#4   | 159.4(3)   | N(1)#2-N(1)-Cu(2)  | 62.02(2)  |
| N(1)#2-Cu(2)-N(1)#4   | 116.94(9)  | C(17)#4-N(1)-Cu(2) | 143.5(5)  |
| N(1)#5-Cu(2)-Cu(1)    | 100.19(14) | C(12)-P(1)-Cu(1)   | 121.9(2)  |
| Cl(2)-Cu(1)-P(1)#1    | 104.79(3)  | C(6)-P(1)-Cu(1)    | 113.27(2) |
| P(1)#1-Cu(1)-P(1)     | 113.72(3)  | C(5)-P(1)-Cu(1)    | 111.6(2)  |
| Cl(2)-Cu(1)-Cu(2)     | 180        |                    |           |
| torsion angles        |            |                    |           |
| N(1)-Cu(2)-Cu(1)-P(1) | 31.50(2)   |                    |           |

<sup>a</sup>Symmetry transformations used to generate equivalent atoms: #1 = -x+y, -x+1, z; #2 = x, x-y+1, z; #3 = -y+1, -x+1, z; #4 = -x+y, y, z; #5 = -y+1, x-y+1, z; #6 = -y, -x, z.

<sup>b</sup>Torsion angle around the Cu2-Cu1-Cl1 axis in a four-membered ring Cu<sub>2</sub>NP.

| bond distances        |            |                   |           |
|-----------------------|------------|-------------------|-----------|
| Cu(2)-N(1)            | 1.983(7)   | Cu(1)-Br(1)       | 2.441(2)  |
| Cu(2)-Cu(1)           | 2.751(2)   | Cu(1)-P(1)        | 2.326(2)  |
| angles                |            |                   |           |
| N(1)#1-Cu(2)-N(1)#2   | 61.3(4)    | P(1)#1-Cu(1)-P(1) | 114.00(4) |
| N(1)#1-Cu(2)-N(1)     | 117.10(11) | Br(1)-Cu(1)-Cu(2) | 180       |
| N(1)#2-Cu(2)-N(1)     | 56.7(4)    | P(1)-Cu(1)-Cu(2)  | 75.57(5)  |
| N(1)#1-Cu(2)-N(1)#3   | 56.7(4)    | C(12)-P(1)-Cu(1)  | 121.1(3)  |
| N(1)-Cu(2)-N(1)#3     | 160.0(4)   | C(6)-P(1)-Cu(1)   | 113.6(2)  |
| N(1)#1-Cu(2)-Cu(1)    | 99.92(2)   | C(5)-P(1)-Cu(1)   | 110.8(3)  |
| Br(1)-Cu(1)-P(1)#1    | 104.43(5)  |                   |           |
| torsion angles        |            |                   |           |
| N(1)-Cu(2)-Cu(1)-P(1) | 31.19(2)   |                   |           |

<sup>a</sup>Symmetry transformations used to generate equivalentatoms: #1 = x+y, -x+1, z; #2 = x, x-y+1, z; #3 = -y+1, -x+1, z; #4 = -x+y, y, z; #5 = -y+1, x-y+1, z; #6 = -y, -x, z.

<sup>b</sup>Torsion angle around the Cu2-Cu1-Br1 axis in a four-membered ring Cu<sub>2</sub>NP.

| bond distances    |            |                   |           |
|-------------------|------------|-------------------|-----------|
| Cu(1)-N(3)        | 2.095(4)   | Cu(2)-P(3)        | 2.2488(7) |
| Cu(1)-P(1)        | 2.2377(8)  | Cu(2)-P(2)        | 2.2618(6) |
| Cu(1)-Br(1)       | 2.5104(5)  | Cu(2)-Br(2)       | 2.5287(3) |
| Cu(1)-Br(2)       | 2.5434(2)  | Cu(2)-Br(1)       | 2.5686(3) |
| Cu(1)-Cu(2)       | 2.8937(8)  |                   |           |
|                   | angles     |                   |           |
| N(3)-Cu(1)-P(1)   | 123.28(10) | P(2)-Cu(2)-Cu(1)  | 150.47(4) |
| N(3)-Cu(1)-Br(1)  | 111.35(10) | Br(2)-Cu(2)-Cu(1) | 55.45(3)  |
| P(1)-Cu(1)-Br(1)  | 104.73(5)  | Br(1)-Cu(2)-Cu(1) | 54.33(4)  |
| N(3)-Cu(1)-Br(2)  | 99.60(11)  | C(1)-P(1)-Cu(1)   | 116.04(5) |
| P(1)-Cu(1)-Br(2)  | 113.35(5)  | C(7)-P(1)-Cu(1)   | 118.83(5) |
| Br(1)-Cu(1)-Br(2) | 102.92(5)  | C(12)-P(1)-Cu(1)  | 113.38(6) |
| N(3)-Cu(1)-Cu(2)  | 90.41(10)  | C(24)-P(2)-Cu(2)  | 114.16(6) |
| P(1)-Cu(1)-Cu(2)  | 146.30(5)  | C(29)-P(2)-Cu(2)  | 118.09(6) |
| Br(1)-Cu(1)-Cu(2) | 56.22(2)   | C(18)-P(2)-Cu(2)  | 113.61(6) |
| Br(2)-Cu(1)-Cu(2) | 54.98(3)   | C(35)-P(3)-Cu(2)  | 116.63(5) |
| P(3)-Cu(2)-P(2)   | 124.42(6)  | C(41)-P(3)-Cu(2)  | 114.94(5) |
| P(3)-Cu(2)-Br(2)  | 104.20(4)  | C(47)-P(3)-Cu(2)  | 115.80(4) |
| P(2)-Cu(2)-Br(2)  | 108.90(5)  | C(51)-N(3)-Cu(1)  | 114.1(3)  |
| P(3)-Cu(2)-Br(1)  | 100.04(4)  | C(47)-N(3)-Cu(1)  | 128.7(3)  |
| P(2)-Cu(2)-Br(1)  | 114.90(5)  | Cu(1)-Br(1)-Cu(2) | 69.45(5)  |
| Br(2)-Cu(2)-Br(1) | 101.70(5)  | Cu(2)-Br(2)-Cu(1) | 69.57(4)  |
| P(3)-Cu(2)-Cu(1)  | 85.05(4)   |                   |           |

| bond distances   |           |                  |           |
|------------------|-----------|------------------|-----------|
| Cu(1)-N(3)       | 2.122(5)  | Cu(2)-P(3)       | 2.260(2)  |
| Cu(1)-P(1)       | 2.261(2)  | Cu(2)-P(2)       | 2.264(2)  |
| Cu(1)-I(2)       | 2.648(2)  | Cu(2)-I(1)       | 2.689(2)  |
| Cu(1)-I(1)       | 2.745(1)  | Cu(2)-I(2)       | 2.695(2)  |
| Cu(1)-Cu(2)      | 2.796(2)  |                  |           |
|                  | angles    |                  |           |
| N(3)-Cu(1)-P(1)  | 117.6(2)  | C(1)-P(1)-C(6)   | 102.8(3)  |
| N(3)-Cu(1)-I(2)  | 113.9(2)  | C(12)-P(1)-C(6)  | 100.4(3)  |
| P(1)-Cu(1)-I(2)  | 108.6(6)  | C(1)-P(1)-Cu(1)  | 117.2(2)  |
| N(3)-Cu(1)-I(1)  | 100.2(2)  | C(12)-P(1)-Cu(1) | 115.8(2)  |
| P(1)-Cu(1)-I(1)  | 108.4(6)  | C(6)-P(1)-Cu(1)  | 114.4(2)  |
| I(2)-Cu(1)-I(1)  | 107.3(4)  | C(29)-P(2)-Cu(2) | 111.4(2)  |
| N(3)-Cu(1)-Cu(2) | 90.96(2)  | C(23)-P(2)-Cu(2) | 117.0(2)  |
| P(1)-Cu(1)-Cu(2) | 151.06(6) | C(18)-P(2)-Cu(2) | 115.6(2)  |
| I(2)-Cu(1)-Cu(2) | 59.27(4)  | C(35)-P(3)-Cu(2) | 116.1(2)  |
| I(1)-Cu(1)-Cu(2) | 58.06(4)  | C(41)-P(3)-Cu(2) | 116.7(2)  |
| P(3)-Cu(2)-P(2)  | 120.81(7) | C(47)-P(3)-Cu(2) | 113.7(2)  |
| P(3)-Cu(2)-I(1)  | 105.93(6) | P(2)-Cu(2)-Cu(1) | 152.22(6) |
| P(2)-Cu(2)-I(1)  | 109.95(7) | I(1)-Cu(2)-Cu(1) | 60.03(4)  |
| P(3)-Cu(2)-I(2)  | 103.71(6) | I(2)-Cu(2)-Cu(1) | 57.63(4)  |
| P(2)-Cu(2)-I(2)  | 108.10(6) | Cu(2)-I(1)-Cu(1) | 61.91(4)  |
| I(1)-Cu(2)-I(2)  | 107.57(4) | Cu(1)-I(2)-Cu(2) | 63.10(3)  |
| P(3)-Cu(2)-Cu(1) | 86.80(6)  |                  |           |
|                  |           |                  |           |





Fig. S1 Powder X-ray diffractions for simulated and experimental 1a-3b.



Fig. S2. one-pot synthesized rod crystal 2a and hexagonal crystal 2b (in the blue box); purified and separated crystal 2a (in the orange box); purified and separated crystal 2b (in the turquoise box).