Tunable electromagnetic properties of $Ti_3C_2T_x/rGO$ foams decorated with NiO particles

Fan Zhang^{a,b}, Siyang Shang^a, Yaya Li^{a,*}, Bingbing Fan^a, Rui Zhang^{a,c}, Biao Zhao^{d,*}, Hongxia Lu^a, Chengliang Ma^a

^aSchool of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

^bHenan Vocational College of Information and Statistics, Zhengzhou 450008, China

^cSchool of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China.

^dSchool of Microelectronics, Fudan University, Shanghai 200433, China

*Corresponding author: zhaobiao1813@163.com; lyzzu06@126.com

Figure S1. XRD patterns of GO, rGO, Ti_3AlC_2 , $Ti_3C_2T_x$, and $Ti_3C_2T_x/rGO/NiO$ composites prepared with varying Ni ions concentrations. In the presence of rGO, MGN1, MGN2, MGN3, and MGN4 are labeled for the sample at the weight ratio of $Ti_3C_2T_x$ to NiO of 2:1, 1:1, 1:2, and 1:3, respectively.

Figure S2. Reflection loss (RL) values of $Ti_3C_2T_x/rGO/NiO$ composites at different thicknesses: (a) MGN1, (b) MGN3, (c) MGN4, (d) comparative curves of MGN1-4.