Supplementary materials

$\mathbf{Z n}$ (II) and $\mathbf{C o}($ II) coordination polymers based on semi-rigid bis-pyridyl-bis-amide and angular dicarboxylate ligands: synthesis, structures and properties

Venkatesan Lakshmanan, ${ }^{a}$ Chia-Yi Lee, ${ }^{a}$ Yu-Wen Tseng, ${ }^{a}$
Yu-Hsiang Liu, ${ }^{\text {a }}$ Chia-Her Lin ${ }^{\mathrm{b}, *}$ and Jhy-Der Chen ${ }^{\mathrm{a}, *}$

1 Department of Chemistry, Chung-Yuan Christian University, Taoyuan City, 320, Taiwan R. O. C;

2 Department of Chemistry, National Taiwan Normal University, Taipei,
Taiwan, R. O. C.

Scheme S1 Structures of selected pesticides.

4-NA

2,6-DCNA

Carbaryl
Atrazine

Nitrofen

3,5-Dinitrobenzoic acid

1,3-Dichlorobenzene

5-Nitroisophthalic acid

Fig. S1 FT-IR spectra of complexes (a) $\mathbf{1}$ (b) $\mathbf{2}$ (c) $\mathbf{3}$ (d) $\mathbf{4}$ (e) $\mathbf{5}$ and (f) 6.

Fig. S2 (a) Simulated and (b) as synthesized PXRD patterns of complex 1.

Fig. S3 (a) Simulated and (b) as synthesized PXRD patterns of complex 2.

Fig. S4 (a) Simulated and (b) as synthesized PXRD patterns of complex 3.

Fig. S5 (a) Simulated and (b) as synthesized PXRD patterns of complex 4.

Fig. S6 (a) Simulated and (b) as synthesized PXRD patterns of complex 5.

Fig. S7 (a) Simulated and (b) as synthesized PXRD patterns of complex 6.

Fig. $\mathbf{S 8}$ TGA curves for complexes (a) $\mathbf{1}$ (b) $\mathbf{2}$ (c) $\mathbf{3}$ (d) $\mathbf{4}$ (e) $\mathbf{5}$ and (f) 6.

Fig. S9 IR spectra for the structural transformations from 6 to 5. (a) CP 6, (b) CP 6 in hydrothermal reaction. The IR spectrum was measured using the purple crystals collected, and (c) CP5.

Fig. S10 PXRD patterns for transformation from 5 to 6.

Fig. S11 IR spectra for the structural transformations from 5 to 6. (a) CP 5, (b) CP 5 in water at room temperature and (c) CP 6.

Fig. S12 PXRD patterns of the dehydrated and rehydrated (a) $\mathbf{1}$ and (b) 2, and $\mathbf{1}$ and $\mathbf{2}$ immersed in solutions with various pH values.

(a)

(b)

Fig. S13 PXRD patterns of (a) $\mathbf{1}$ and (b) $\mathbf{2}$ immersed in various solvents for 48 h .

(a)

(b)

Fig. S14 (a) CO_{2} sorption isotherm of complex 1 at 273 K and (b) pore size distributions.

(a)

(b)

Fig. S15 (a) CO_{2} sorption isotherm of complex 2 at 273 K and (b) pore size distributions.

(b)

Fig. $\mathbf{S 1 6} \mathrm{CO}_{2}$ sorption isotherms of complexes (a) $\mathbf{1}$ and (b) $\mathbf{2}$ at 298 K and PXRD patterns of (c) $\mathbf{1}$ and (d) $\mathbf{2}$ measured after experiments.

(a)

$$
\left(P / P^{0}\right)
$$

(b)

Fig. S17 Excitation and emission spectra for (a) \mathbf{L}^{1} and \mathbf{L}^{2} and (b) $\mathrm{H}_{2} \mathrm{FIPBB}, \mathrm{H}_{2} \mathrm{OBA}$ and 1 and 2.

(a)

(b)

Fig. S18 Emission spectra of solvent-free (a) $\mathbf{1}$ and (b) $\mathbf{2}$ dispersed in DCM with various pesticides.

(b)

Fig. S19 PXRD patterns before and after treatments with 2,6-DCNA and 4-NA for (a) 1 and (b) 2.

(a)

(b)

Fig. S20 Emission spectra of the activated samples $\mathbf{1}$ dispersed in DCM of (a) 2,6DCNA and (b) 4-NA at various concentration.

(a)

(b)

Fig. S21 Emission spectra of the activated samples 2 dispersed in DCM of (a) 2,6DCNA and (b) 4-NA at various concentration.

(a)

(b)

Fig. S22 (a) Bar diagrams showing the relative emission intensities of $\mathbf{1}$ and $\mathbf{2}$ dispersed in various pesticides and the Stern-Volmer (SV) plot of 1 in (b) 2,6DCNA and (c) 4-NA and 2 in (d) 2,6-DCNA and (e) 4-NA, showing I_{0} / I versus analyte concentration.

(c)

(e)

(b)

(d)

Fig. S23 Bar diagrams showing the emission intensities of (a) $\mathbf{1}$ and (b) 2 treated with 2,6-DCNA and 4-NA for five repeated cycles.

Fig. S24 The IR spectra of complex (a) $\mathbf{1}$ and (b) $\mathbf{2}$ before and after treated with 4NA and 2,6-DCNA.

(a)

(b)

Fig. S25 UV-vis absorption spectrum of 4-NA and 2,6-DCNA in DCM solution and the excitation and emission spectra of (a) $\mathbf{1}$ and (b) 2.

Fig. S26 Water contact angle (WCA) images of samples (a) $\mathbf{1}$ (b) $\mathbf{2}$ (c) $\mathbf{3}$ (d) $\mathbf{4}$ (e) $\mathbf{5}$ and (f) 6

CP-1

CP-1-C-18

(d)

CP-5

(e)

CP-6-C-18

(f)

Fig. S27 FT-IR analysis for 2 (black curve) and 2-C18 (red curve).

Fig. S28 TGA curves for activated 2a (black) and 2a-C18 (red).

Fig. S29 (a) CO_{2} uptake at 273 K for 2a and 2a-C18. (b) SEM images of $\mathbf{2}$ before and after post-synthesis modification.

2-C-18
(b)

Table S1. Sensing properties of reported compounds towards 2,6-DCNA, and 4-NA pesticides.

Complex	Analytes	Stern-Volmer constant $\left(\mathbf{K}_{\mathrm{sv}}, \mathbf{M}^{-1}\right)$	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{R}^{\mathbf{2}} \end{gathered}$	Limit of detection ($\mu \mathbf{M}$)	Reference
$\left\{\left[\mathrm{Zn}\left(\mathbf{L}^{\mathbf{1}}\right)_{0.5}(\mathrm{FIPBB}) \cdot \mathrm{H}_{2} \mathrm{O}\right]\right\}_{\mathrm{n}}, \mathbf{1}$	2,6-DCNA,	1.136×10^{4}	0.981	3.62	this work
	4-NA	1.313×10^{4}	0.992	4.14	
$\left\{\left[\mathrm{Zn}\left(\mathbf{L}^{\mathbf{2}}\right)(\mathrm{OBA}) \cdot \mathrm{CH}_{3} \mathrm{OH}\right]\right\}_{\mathrm{n}}, \mathbf{2}$	2,6-DCNA,	2.025×10^{5}	0.988	2.86	this work
	4-NA	2.623×10^{5}	0.992	1.94	
Mg-APDA	2,6-DCNA	7.50×10^{4}	0.9815	1.50	Inorg. Chem. 2018, 57, 21, 13330-13340.
$\left[\left\{\mathrm{Zn}(\mathrm{L})_{2}(\mathrm{DMF})_{4}\right\} \cdot 2 \mathrm{BF}_{4}\right]_{\alpha}$	2,6-DNA,	6.401×10^{4}	0.995	2.97	Chem Asian. J. 2022, 17, 202101204.
$\left[\left\{\mathrm{Cd}(\mathrm{~L})_{2}(\mathrm{Cl})_{2}\right\} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\alpha}$	4-NA	7.130×10^{4}	0.919	0.90	
$\left(\mathrm{H}_{3} \mathrm{O}\right)\left[\mathrm{Zn}_{2} \mathrm{~L}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3 \mathrm{NMP} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2,6-DCNA	6.072×10^{3}	0.922	5.4	RSC Adv., 2019, 9, 38469-38476.
$\left[\mathrm{Eu}_{2}(\mathrm{dtztp})(\mathrm{OH})_{2}(\mathrm{DMF})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2.5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2,6-DCNA	6.25×10^{4}	0.995	2.91	Sensors and Actuators: B. Chemical, 2021, 331, 129377.
[Ag(3-dpyb)(H_{3} odpa) $] \cdot \mathrm{H}_{2} \mathrm{O}$	2,6-DCNA	2.028×10^{5}	0.988	1.15	RSC Adv., 2020, 10, 44712-44718.
$\left\{\left[\mathrm{Cd}(\mathrm{tptc})_{0.5}(\mathrm{bpz})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot{ }_{0.5} \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	2,6-DCNA	4.71×10^{4}	0.989	1.14	Molecular and Biomolecular Spectroscopy,
$\left[\mathrm{Cd}(\text { tptc })_{0.5}(\mathrm{bpy})\right]_{\mathrm{n}}$	2,6-DCNA	8.27×10^{3}	0.994	6.38	2020, 239, 118467.
[$\left.\mathrm{Zn}_{2}(\mathrm{bpdc})_{2}(\mathrm{BPyTPE})\right]$	2,6-DCNA	8.04×10^{3}	0.996	1.30	Chem. Commun., 2017, 53, 9975-9978.
$\left[\mathrm{Cd}_{3}\left(\mathrm{~L}^{2}\right)_{2}(\mathrm{H} 2 \mathrm{O}) 4\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}(4)$	4-NA	2.15×10^{4}	0.998	1.14	Cryst. Growth Des. 2018, 18, 431-440.
$\left[\mathrm{Cd}(\text { ppvppa) }(1,4-\mathrm{NDC})]_{\mathrm{n}}(10)\right.$	4-NA	1.3×10^{3}	0.985	1.20	Cryst. Growth Des. 2015, 15, 2753-2760.
[Cd(tptc) ${ }_{0.5}$ (phen) $]$	2,6-DCNA	5.18×10^{4}		1.02	New J. Chem., 2019, 43, 13349-13356.
[$\left.\mathrm{Zn}_{3}(\mathrm{DDB})(\mathrm{DPE})\right]$	2,6-DCNA	3.3×10^{4}	0.990	3.3	Dalton Trans., 2019, 48, 16776-16785.
LNU-45	2,6-DCNA	9.09×10^{4}	0.998	1.5	Molecules, 2022, 27, 126.
LNU-47	2,6-DCNA	1.62×10^{3}	0.992	1.9	

