Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	$SSdeEDTTTF_ax_ext$
Formula	C12H14S6
Charge	0
Spin multiplicity	1
Monoisotopic mass	349.94198 Da
InChI	$\frac{15}{C12H14S6}/c1-3-7-8(4-2)16-12-11(15-7)17-10(18-12)9-13-5-6-14-9/h5-8H, 3-4H2, 1-2H3/t7-, 8-7m0/s1}{12}$
SMILES	C1=CS/C(=C/2 SC3=C(S2)S[C@H]([C@@H](S3)CC)CC)/S1

2. COMPUTATIONAL DETAILS

Gaussian DFT PBE1PBE 6-311++G(3df,2pd) 960 True	(2009+D.01)
1e-08	1e-06
1e-06	
0.000009	0.000450
0.000002	0.000300
0.000398	0.001800
0.000108	0.001200
40	['Singlet-A']
298.15 K	
None	
None	
	Gaussian DFT PBE1PBE 6-311++G(3df,2pd) 960 True 1e-08 1e-06 0.000009 0.000002 0.000098 0.000108 40 298.15 K None None

3. RESULTS

Total molecular energy
HOMO number
LUMO+1 energies
LUMO energies
HOMO energies
HOMO-1 energies

Geometry optimization specific results Converged nuclear repulsion energy -2853.67768 hartrees 91 -0.63 eV -1.01 eV -4.92 eV -6.00 eV

2202.67569 Hartrees

Frequency and Thermochemistry specific results

Enthalpy at 298.15 K Gibbs free energy at 298.15 K Entropy at 298.15 K

Mean Mulliken atomic charge and standard deviation Atoms with negatives charges under the standard deviation

Atoms with positives charges over the standard deviation

-2853.42218 Hartrees -2853.49332 Hartrees 0.00024 Hartrees

-0.0000 e-	0.4042 e-
N°	Mulliken charge
S 9	-0.775
S 12	-0.770
S 13	-0.747
S 16	-0.668
S 7	-0.507
S 5	-0.487
N°	Mulliken charge
C 8	+0.460
C 6	+0.650
C 11	+0.836
C 10	+0.956

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Table. First five calculated mono-electronic excitations and those with f > 0.1 or R > 10.

E.S.	Symmetry	nm	cm^{-1}	f	R	Λ	\mathbf{d}_{CT}	\mathbf{q}_{CT}	Excitation description : initial OM - end- ing OM (% if $> 5\%$)
1	Singlet-A	462	21607	0.003	0.9	0.58	18.07	0.66	91-92(97):
2	Singlet-A	379	26360	0.016	-11.9	0.63	60.02	0.59	91-93(93);
3	Singlet-A	332	30051	0.062	-0.1	0.50	127.51	0.53	90-92(46); 91-94(31); 91-100(7);
4	Singlet-A	324	30774	0.019	29.2	0.53	357.40	0.56	91-94(11); 91-95(29); 91-96(49); 91-97(6);
5	Singlet-A	321	31078	0.044	-6.2	0.47	384.53	0.56	91-94(11); 91-95(7); 91-97(65);
6	Singlet-A	308	32429	0.248	10.8	0.54	27.91	0.48	90-92(24); 91-94(40); 91-96(6); 91-97(12);
9	Singlet-A	287	34763	0.019	-14.7	0.43	173.83	0.57	91-95(12); 91-96(6); 91-98(19); 91-100(43);
10	Singlet-A	281	35504	0.015	-10.1	0.43	185.01	0.53	90-93(19); 90-97(9); 91-101(33); 91-
									105(17);
13	Singlet-A	268	37282	0.024	-51.7	0.41	133.76	0.54	90-93(28); 91-99(25); 91-102(20); 91-
									103(9);
15	Singlet-A	263	37990	0.008	24.0	0.33	309.32	0.58	90-94(6); 91-99(24); 91-103(8); 91-104(23);
									91-106(10);
16	Singlet-A	261	38281	0.059	18.1	0.42	236.20	0.57	90-94(75); 91-101(9);
20	Singlet-A	249	40046	0.019	-17.5	0.34	328.38	0.59	91-104(8); 91-106(29); 91-107(24); 91-
									108(7); 91-109(7);
21	Singlet-A	246	40514	0.019	-42.3	0.44	194.72	0.49	90-95(31); 90-96(25); 91-107(10);
24	Singlet-A	241	41413	0.026	36.7	0.43	185.84	0.49	90-95(7); 90-96(43); 91-107(11); 91-108(7);
25	Singlet-A	237	42086	0.034	17.0	0.38	162.24	0.53	88-92(14); 90-95(22); 90-100(9); 91-
									109(13); 91-112(8);
31	Singlet-A	225	44254	0.062	22.4	0.39	230.67	0.50	88-92(29); 89-93(28); 90-98(6);
35	Singlet-A	219	45504	0.008	12.9	0.29	141.91	0.56	90-99(32); 90-103(14); 90-105(17);
38	Singlet-A	215	46441	0.026	11.0	0.29	237.98	0.50	89-94(48); 90-102(7); 91-113(7);
39	Singlet-A	214	46609	0.006	-18.7	0.31	130.62	0.55	89-94(9); 90-102(46); 90-104(11);

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbers

Frequencies	Intensity	Symmetry
656	57	А

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

<i>.</i> .	Converg	seu cartes.	an atomic	coordinates	in mesonom
	Atom	Х	Υ	Z	
	Н	-6.2064	1.5613	0.0512	
	\mathbf{C}	-5.3760	0.8746	0.1302	
	\mathbf{C}	-5.3777	-0.2406	0.8570	
	Η	-6.2098	-0.5882	1.4522	
	\mathbf{S}	-3.9569	-1.2387	0.8003	

Table.	Converged	$\operatorname{cartesian}$	atomic	coordinates	in Angstroms
	A 4	v	V	7	

\mathbf{C}	-3.0080	-0.0797	-0.1091	
\mathbf{S}	-3.9527	1.2224	-0.8036	
\mathbf{C}	-1.6785	-0.1944	-0.2796	
\mathbf{S}	-0.7325	-1.5082	0.3761	
\mathbf{C}	0.7859	-0.6283	0.2754	
\mathbf{C}	0.7858	0.4984	-0.4562	
\mathbf{S}	-0.7359	0.9307	-1.2278	
\mathbf{S}	2.1319	-1.3856	1.0744	
\mathbf{C}	3.4968	-0.6742	0.1081	
\mathbf{C}	3.4642	0.8573	0.1427	
\mathbf{S}	2.1148	1.5465	-0.8645	
\mathbf{C}	3.6010	-1.2600	-1.2939	
\mathbf{C}	4.0007	-2.7247	-1.3146	
\mathbf{C}	3.4912	1.4418	1.5500	
\mathbf{C}	3.8173	2.9241	1.5888	
Η	4.3487	1.2052	-0.4032	
Η	4.3721	-0.9803	0.6918	
Н	4.3385	-0.6656	-1.8450	
Η	2.6503	-1.1195	-1.8128	
Н	4.2399	0.8834	2.1242	
Н	2.5320	1.2501	2.0344	
Н	3.8315	3.2888	2.6167	
Н	4.7979	3.1280	1.1510	
Н	3.0758	3.5056	1.0388	
Η	4.0638	-3.0922	-2.3396	
Н	4.9764	-2.8782	-0.8466	
Н	3.2726	-3.3393	-0.7834	

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 6: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 7: Representation of the Electron Density Difference (S2-S0) from two points of view.

1. MOLECULE

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	SSdeEDTTTF_eq_ext
Formula	C12H14S6
Charge	0
Spin multiplicity	1
Monoisotopic mass	349.94198 Da
InChI	1S/C12H14S6/c1-3-7-8(4-2)16-12-11(15-7)17-10(18-12)9-13-5-6-14-9/h5-8H, 3-4H2, 1-2H3/t7-, 8-700/s1
SMILES	$C1 = CS/C(=C/2 \setminus SC3 = C(S2)S[C@H]([C@@H](S3)CC)CC)/S1$

2. COMPUTATIONAL DETAILS

	~ .	(
Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	PBE1PBE	
Basis set name	6-311++G(3df,2pd)	
Number of basis set functions	960	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000029	0.000450
RMS Force value and threshold	0.000006	0.000300
Max Displacement value and threshold	0.001409	0.001800
RMS Displacement value and threshold	0.000440	0.001200
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	40	['Singlet-A']
Job type: Frequency and thermochemical analysis		
Temperature	298.15 K	
Anharmonic effects	None	
Anharmonic effects	None	

3. RESULTS

Total molecular energy HOMO number LUMO+1 energies LUMO energies HOMO energies HOMO-1 energies	-2853.67575 hartrees 91 -0.84 eV -0.96 eV -4.95 eV -6.35 eV
Geometry optimization specific results Converged nuclear repulsion energy	2176.13942 Hartrees
Frequency and Thermochemistry specific results Enthalpy at 298.15 K Gibbs free energy at 298.15 K	-2853.42031 Hartrees -2853.49181 Hartrees

Entropy at 298.15 K	0.00024 Hartrees	
Mean Mulliken atomic charge and standard deviation	0.0000 e-	0.4139 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	S 16	-0.837
	S 12	-0.810
	S 13	-0.694
	S 9	-0.618
	S 5	-0.512
	S 7	-0.492
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	C 8	+0.465
	C 11	+0.571
	C 6	+0.682
	C 10	+1.231

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

	Table. First five calculated mono-electronic excitations and those with $f > 0.1$ or $R > 10$.								
E.S.	Symmetry	nm	cm^{-1}	f	\mathbf{R}	Λ	d_{CT}	\mathbf{q}_{CT}	Excitation description : initial OM - end-
									ing OM (% if $> 5\%$)
1	Singlet-A	450	22178	0.005	-0.5	0.58	12.02	0.64	91-92(96);
2	Singlet-A	391	25543	0.025	-3.0	0.60	295.99	0.61	91-93(94);
3	Singlet-A	338	29567	0.001	-5.0	0.59	248.70	0.64	91-95(92);
4	Singlet-A	322	30970	0.227	11.2	0.61	107.58	0.45	90-92(12); 91-94(70);
5	Singlet-A	302	33066	0.012	-1.8	0.44	68.34	0.59	91-98(17); 91-100(68);
6	Singlet-A	301	33205	0.108	-3.0	0.41	347.13	0.55	90-92(11); 91-94(17); 91-96(17); 91-98(7);
									91-99(11); 91-101(7); 91-102(15);
13	Singlet-A	265	37595	0.029	-15.8	0.56	268.79	0.45	90-93(62); 91-101(14);
17	Singlet-A	248	40174	0.086	-25.5	0.48	316.41	0.54	89-93(53); 90-94(22);
23	Singlet-A	236	42199	0.021	12.8	0.47	192.11	0.47	90-95(41); 91-109(17); 91-110(16);
25	Singlet-A	232	42949	0.008	-12.0	0.33	267.36	0.57	91-106(15); 91-107(6); 91-110(7); 91-
									111(46);
29	Singlet-A	224	44542	0.005	29.0	0.47	29.54	0.47	87-92(6); 88-93(48); 91-113(12);
31	Singlet-A	222	44867	0.004	15.2	0.31	127.68	0.53	90-96(10); 90-97(15); 90-99(9); 90-100(10);
									91-112(13); 91-113(9);
32	Singlet-A	221	45147	0.003	-24.3	0.36	126.93	0.50	87-92(14); 90-95(6); 90-96(22); 90-98(8);
									90-100(20);
40	Singlet-A	210	47570	0.018	13.3	0.30	292.46	0.52	90-98(6); 90-99(6); 91-115(6); 91-117(27);
									91-119(14);

Table. Most intense (> 50 km/mol) molecular vibrations in wavenumbersFrequenciesIntensitySymmetry

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Atom	X	Υ	Z	
Н	-6.4393	1.3092	-0.2847	
\mathbf{C}	-5.5744	0.6824	-0.1217	
С	-5.5864	-0.6485	-0.1343	
Н	-6.4624	-1.2565	-0.3088	
S	-4.0932	-1.4686	0.2062	
\mathbf{C}	-3.1244	-0.0083	0.1982	
S	-4.0668	1.4688	0.2342	
С	-1.7791	-0.0210	0.1935	
S	-0.8298	-1.4943	0.2015	
\mathbf{C}	0.5880	-0.7086	-0.4579	
С	0.6049	0.6366	-0.4399	
S	-0.8032	1.4351	0.2274	
\mathbf{S}	1.9951	-1.6108	-0.9016	
С	3.1978	-0.7163	0.1503	
\mathbf{C}	3.4094	0.7442	-0.2439	
\mathbf{S}	1.9450	1.5808	-0.9921	
С	4.5124	-1.4954	0.1134	
\mathbf{C}	4.4679	-2.8207	0.8551	
С	3.9278	1.5605	0.9396	
\mathbf{C}	4.4501	2.9337	0.5564	
Н	2.7749	-0.7492	1.1583	
Н	4.1347	0.7791	-1.0634	
Н	3.1217	1.6516	1.6734	
Н	4.7294	0.9948	1.4268	
Н	4.8110	3.4708	1.4345	
Н	5.2796	2.8564	-0.1507	
Н	3.6684	3.5389	0.0943	
Н	5.2952	-0.8644	0.5439	
Н	4.7948	-1.6530	-0.9329	
Н	5.4326	-3.3268	0.7988	
Н	4.2311	-2.6699	1.9106	
Н	3.7129	-3.4882	0.4383	

Table. Converged cartesian	atomic	coordinates	in	Angstroms
----------------------------	--------	-------------	----	-----------

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 6: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 7: Representation of the Electron Density Difference (S2-S0) from two points of view.

1. MOLECULE

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	RRdeEDTTTF_ax_ext
Formula	C12H14S6
Charge	0
Spin multiplicity	1
Monoisotopic mass	349.94198 Da
InChI	1S/C12H14S6/c1-3-7-8(4-2)16-12-11(15-7)17-10(18-12)9-13-5-6-14-9/h5-8H, 3-4H2, 1-2H3/t7-, 8-7/m1/s1
SMILES	$S1C2=C(S[C@@H]([C@H]1CC)CC)S/C(=C\1/SC=CS1)/S2$

2. COMPUTATIONAL DETAILS

		<i>.</i> – ,
Software	Gaussian	(2009+D.01)
Computational method	DFT	
Functional	PBE1PBE	
Basis set name	6-311++G(3df,2pd)	
Number of basis set functions	960	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000012	0.000450
RMS Force value and threshold	0.000002	0.000300
Max Displacement value and threshold	0.001142	0.001800
RMS Displacement value and threshold	0.000302	0.001200
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	40	['Singlet-A']

3. RESULTS

Total molecular energy	-2853.67768 hartree	S
HOMO number	91	
LUMO+1 energies	-0.63 eV	
LUMO energies	-1.01 eV	
HOMO energies	-4.92 eV	
HOMO-1 energies	-6.00 eV	
Geometry optimization specific results		
Converged nuclear repulsion energy	2202.67308 Hartrees	3
Mean Mulliken atomic charge and standard deviation	0.0000 e-	0.4042 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	S 7	-0.775
	S 9	-0.770

Atoms with positives charges over the standard deviation	S 4 S 1 S 11 S 14 $N\hat{A}^{\circ}$ C 8 C 10 C 2 C 3	$\begin{array}{c} -0.747 \\ -0.668 \\ -0.507 \\ -0.487 \\ \text{Mulliken charge} \\ +0.460 \\ +0.650 \\ +0.836 \\ +0.956 \end{array}$

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Table. First five calculated mono-electronic excitations and those with f > 0.1 or R > 10.

E.S.	Symmetry	nm	cm^{-1}	f	R	Λ	d_{CT}	\mathbf{q}_{CT}	Excitation description : initial OM - end-
									ing OM (% if $> 5\%$)
1	Singlet-A	462	21605	0.003	-0.9	0.58	18.10	0.66	91-92(97);
2	Singlet-A	379	26360	0.016	11.9	0.63	60.00	0.59	91-93(93);
3	Singlet-A	332	30051	0.061	0.1	0.50	127.70	0.53	90-92(46); 91-94(31); 91-100(7);
4	Singlet-A	324	30774	0.019	-29.2	0.53	356.00	0.56	91-94(11); 91-95(29); 91-96(49); 91-97(6);
5	Singlet-A	321	31077	0.044	6.1	0.47	384.23	0.56	91-94(11); 91-95(7); 91-97(65);
6	Singlet-A	308	32429	0.248	-10.7	0.54	27.31	0.48	90-92(24); 91-94(40); 91-96(7); 91-97(12);
9	Singlet-A	287	34762	0.019	14.7	0.43	172.72	0.57	91-95(12); 91-96(6); 91-98(19); 91-100(43);
10	Singlet-A	281	35504	0.015	10.1	0.43	184.73	0.53	90-93(19); 90-97(9); 91-101(33); 91-
									105(17);
13	Singlet-A	268	37282	0.024	51.7	0.41	132.70	0.54	90-93(28); 91-99(25); 91-102(20); 91-
									103(9);
15	Singlet-A	263	37989	0.008	-24.0	0.33	308.51	0.58	90-94(6); 91-99(24); 91-103(8); 91-104(23);
									91-106(10);
16	Singlet-A	261	38282	0.059	-18.1	0.42	236.69	0.57	90-94(75); 91-101(9);
20	Singlet-A	249	40045	0.019	17.5	0.34	327.49	0.59	91-104(8); 91-106(29); 91-107(24); 91-
									108(7); 91-109(7);
21	Singlet-A	246	40515	0.019	42.3	0.44	193.32	0.49	90-95(31); 90-96(25); 91-107(10);
24	Singlet-A	241	41413	0.026	-36.7	0.43	183.66	0.49	90-95(7); 90-96(44); 91-107(11); 91-108(7);
25	Singlet-A	237	42085	0.034	-17.0	0.38	161.39	0.53	88-92(14); 90-95(22); 90-100(9); 91-
									109(13); 91-112(8);
31	Singlet-A	225	44254	0.062	-22.5	0.39	231.81	0.50	88-92(29); 89-93(28); 90-98(6);
35	Singlet-A	219	45504	0.008	-12.9	0.29	140.54	0.56	90-99(32); 90-103(14); 90-105(17);
38	Singlet-A	215	46442	0.026	-11.1	0.29	239.16	0.50	89-94(48); 90-102(7); 91-113(6);
39	Singlet-A	214	46609	0.006	18.9	0.31	132.54	0.55	89-94(9); 90-102(46); 90-104(11);

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

	0			0.
Atom	Х	Υ	Z	
\mathbf{S}	-2.1149	1.5465	-0.8644	
\mathbf{C}	-0.7859	0.4985	-0.4560	
\mathbf{C}	-0.7858	-0.6283	0.2756	
\mathbf{S}	-2.1319	-1.3856	1.0744	
\mathbf{C}	-3.4967	-0.6744	0.1079	
\mathbf{C}	-3.4643	0.8572	0.1425	
\mathbf{S}	0.7325	-1.5081	0.3763	
\mathbf{C}	1.6785	-0.1943	-0.2794	
\mathbf{S}	0.7358	0.9309	-1.2276	

Table.	Converged	$\operatorname{cartesian}$	atomic	coordinates	$_{in}$	Angstroms
				_		

\mathbf{C}	3.0080	-0.0796	-0.1091	
\mathbf{S}	3.9526	1.2226	-0.8035	
\mathbf{C}	5.3760	0.8747	0.1301	
\mathbf{C}	5.3779	-0.2406	0.8568	
\mathbf{S}	3.9570	-1.2387	0.8002	
Η	6.2100	-0.5884	1.4519	
Η	6.2064	1.5614	0.0510	
\mathbf{C}	-3.6006	-1.2602	-1.2941	
\mathbf{C}	-4.0001	-2.7249	-1.3149	
\mathbf{C}	-3.4917	1.4416	1.5499	
\mathbf{C}	-3.8179	2.9240	1.5886	
Η	-4.3488	1.2049	-0.4035	
Η	-4.3721	-0.9806	0.6915	
Η	-4.2404	0.8832	2.1239	
Η	-2.5325	1.2500	2.0344	
Η	-4.3382	-0.6658	-1.8453	
Η	-2.6499	-1.1194	-1.8129	
Η	-3.8323	3.2886	2.6165	
Η	-3.0763	3.5055	1.0388	
Η	-4.7984	3.1278	1.1506	
Η	-4.0630	-3.0924	-2.3399	
Η	-3.2720	-3.3394	-0.7836	
Η	-4.9758	-2.8786	-0.8470	

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

1. MOLECULE

Figure 1: Chemical structure diagram with atomic numbering from two points of view.

Directory name	RRdeEDTTTF_eq_ext
Formula	C12H14S6
Charge	0
Spin multiplicity	1
Monoisotopic mass	349.94198 Da
InChI	1S/C12H14S6/c1-3-7-8(4-2)16-12-11(15-7)17-10(18-12)9-13-5-6-14-9/h5-8H, 3-4H2, 1-2H3/t7-, 8-7-10(18-12)9-13-5-6-14-9/h5-8H, 3-4H2, 1-2H3/t7-, 8-7-10(18-12)9-10(18-12)
SMILES	$C1 = CS/C(=C/2 \ SC3 = C(S2)S[C@@H]([C@H](S3)CC)CC)/S1$

2. COMPUTATIONAL DETAILS

	a .	(2000 + D. 01)
Software	Gaussian	(2009+D.01)
Computational method		
Functional	PBE1PBE	
Basis set name	6-311++G(3df,2pd)	
Number of basis set functions	960	
Closed shell calculation	True	
Requested SCF convergence on RMS and Max density matrix	1e-08	1e-06
Requested SCF convergence on energy	1e-06	
Job type: Geometry optimization		
Max Force value and threshold	0.000138	0.000450
RMS Force value and threshold	0.000013	0.000300
Max Displacement value and threshold	0.000819	0.001800
RMS Displacement value and threshold	0.000170	0.001200
Job type: Frequency and thermochemical analysis		
Temperature	$298.15 { m K}$	
Anharmonic effects	None	
Anharmonic effects	None	
Job type: Time-dependent calculation		
Number of calculated excited states and spin state	40	['Singlet-A']

3. RESULTS

Total molecular energy	-2853.67575 hartrees
HOMO number	91
LUMO+1 energies	-0.84 eV
LUMO energies	-0.96 eV
HOMO energies	-4.95 eV
HOMO-1 energies	-6.35 eV
Geometry optimization specific results	2176 12000 Hartroos
Converged nuclear repulsion energy	2170.15555 Harnees
Frequency and Thermochemistry specific results	
Enthalpy at 298.15 K	-2853.42030 Hartrees
Gibbs free energy at 298.15 K	-2853.49182 Hartrees

Entropy at 298.15 K	0.00024 Hartrees	
Mean Mulliken atomic charge and standard deviation	0.0000 e-	0.4139 e-
Atoms with negatives charges under the standard deviation	N°	Mulliken charge
	S 16	-0.836
	S 12	-0.810
	S 13	-0.694
	S 9	-0.618
	S 5	-0.512
	S 7	-0.492
Atoms with positives charges over the standard deviation	N°	Mulliken charge
	C 8	+0.466
	C 11	+0.571
	C 6	+0.682
	C 10	+1.231

Figure 2: Representation of the HOMO from two points of view.

Figure 3: Representation of the LUMO from two points of view.

Table. Most intense $(> 50 \text{ km/mol})$ molecular vibrations in wavenumbers					
Frequencies	Intensity	Symmetry			
656	57	А			

Table. First five calculated mono-electronic excitations and those with f > 0.1 or R > 10.

E.S.	Symmetry	nm	cm^{-1}	f	R	Λ	d_{CT}	\mathbf{q}_{CT}	Excitation description : initial OM - end-
									ing OM (% if $> 5\%$)
1	Singlet-A	450	22176	0.005	0.5	0.58	11.94	0.64	91-92(96);
2	Singlet-A	391	25544	0.025	2.9	0.60	296.16	0.61	91-93(94);
3	Singlet-A	338	29569	0.001	5.0	0.59	248.80	0.64	91-95(92);
4	Singlet-A	322	30971	0.227	-11.2	0.61	107.76	0.45	90-92(12); 91-94(70);
5	Singlet-A	302	33063	0.012	2.0	0.44	65.66	0.59	91-98(17); 91-100(68);
6	Singlet-A	301	33201	0.108	2.8	0.41	347.04	0.55	90-92(11); 91-94(17); 91-96(17); 91-98(8);
									91-99(11); 91-101(7); 91-102(15);
13	Singlet-A	265	37595	0.029	15.8	0.56	268.08	0.45	90-93(62); 91-101(14);
17	Singlet-A	248	40176	0.086	25.4	0.48	315.93	0.54	89-93(53); 90-94(22);
23	Singlet-A	236	42200	0.021	-12.8	0.47	194.29	0.47	88-93(6); 90-95(41); 91-109(17); 91-
									110(16);
25	Singlet-A	232	42949	0.008	12.1	0.33	267.43	0.57	91-106(15); 91-107(6); 91-110(7); 91-
									111(46);
29	Singlet-A	224	44542	0.005	-29.4	0.47	29.42	0.47	87-92(6); 88-93(47); 91-113(12);
31	Singlet-A	222	44863	0.004	-15.3	0.31	127.65	0.53	90-96(11); 90-97(15); 90-99(9); 90-100(10);
									91-112(13); 91-113(9);
32	Singlet-A	221	45146	0.003	24.3	0.36	125.31	0.50	87-92(14); 90-95(6); 90-96(22); 90-98(8);
									90-100(20);
40	Singlet-A	210	47568	0.018	-13.4	0.29	289.57	0.51	90-98(6); 90-99(6); 91-115(7); 91-117(27);
									91-119(14);

Figure 4: Calculated UV visible Absorption spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Ato	m	Х	Υ	Z	
	Η	-6.4394	1.3087	0.2858	
	\mathbf{C}	-5.5746	0.6819	0.1224	
	\mathbf{C}	-5.5863	-0.6490	0.1342	
	Η	-6.4620	-1.2569	0.3086	
	\mathbf{S}	-4.0930	-1.4688	-0.2064	
	\mathbf{C}	-3.1245	-0.0084	-0.1983	
	\mathbf{S}	-4.0670	1.4685	-0.2332	
	\mathbf{C}	-1.7791	-0.0211	-0.1941	
	\mathbf{S}	-0.8296	-1.4942	-0.2026	
	\mathbf{C}	0.5881	-0.7086	0.4572	
	\mathbf{C}	0.6047	0.6366	0.4397	
	\mathbf{S}	-0.8034	1.4352	-0.2273	
	\mathbf{S}	1.9950	-1.6110	0.9010	
	\mathbf{C}	3.1981	-0.7162	-0.1502	

Table. Converged cartesian atomic coordinates in Angstroms Atom X X Z

\mathbf{C}	3.4092	0.7444	0.2439	
\mathbf{S}	1.9448	1.5808	0.9924	
\mathbf{C}	4.5131	-1.4948	-0.1124	
\mathbf{C}	4.4696	-2.8205	-0.8534	
\mathbf{C}	3.9269	1.5608	-0.9399	
\mathbf{C}	4.4488	2.9342	-0.5571	
Η	2.7759	-0.7493	-1.1584	
Η	4.1347	0.7798	1.0631	
Η	5.2957	-0.8635	-0.5427	
Η	4.7950	-1.6517	0.9341	
Η	5.4348	-3.3257	-0.7969	
Η	3.7153	-3.4885	-0.4363	
Η	4.2326	-2.6704	-1.9090	
Η	4.7286	0.9953	-1.4272	
Η	3.1206	1.6514	-1.6735	
Η	4.8092	3.4714	-1.4353	
Η	3.6669	3.5391	-0.0948	
Η	5.2786	2.8573	0.1498	

Figure 5: Calculated Circular Dichroism spectrum with a gaussian broadening (FWHM = 3000 cm-1)

Figure 6: Representation of the Electron Density Difference (S1-S0) from two points of view.

Figure 7: Representation of the Electron Density Difference (S2-S0) from two points of view.