Different Nanostructured CoP Microcubes Derivd from Metal Formate Frameworks with Enhanced Oxygen Evolution Reaction

Zhihao Duan^{1, a}, Jiahui Jiang^{1, b}, Hang Zhao^a, Qidi Hu^a, Jian Wan^a, Jingbo Zhou^a, Weiwei Wang^b, Li Zhang^{a,b*},

a. College of Chemical Engineering, Xinjiang University,Urumqi, 830046, Xinjiang, PR China.

b. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.

1. Jiahui Jiang and Zhihao Duan contributed equally to this manuscript.

* Corresponding author

E-mail: zhangli420@xju.edu.cn

Materials: Cobalt (II) perchlorate hydrate, Cobalt(II) nitratehexahydrate $(Co(NO_3)_2 \cdot 6H_2O, 98\%)$ and sodiumhypophosphite $(NaH_2PO_2 \cdot H_2O, 99\%)$ were provided by Tianjin Yongsheng Fine Chemical Company. Anhydrous ethanol $(CH_3CH_2OH, 99.7 \text{ wt\%})$, Formic acid (HCOOH, 88wt%) and methylamine water solution $(CH_3NH_2, 30wt\%)$ were provided by Tianjin Zhiyuan Chemical Plants. Surfactant polyvinylpyrrolidone K30 (PVP K30) was purchased from Tokyo Chemical Industry Co.,Ltd. All materials were used as purchased without further purification.

Structural characterizations: The surfacial morphology and elemental composition of samples were examined by field-emission scanning electron microscopy (FESEM; Hitachi S-4800 microscope) attached with energy dispersive X-ray spectrometry (EDX). Powder X-ray diffraction (PXRD) texted by Bruker D8 advance diffractometer with Cu Ka radiation was used to analysize crystal phase and porous features of products. The Barrett-Emmett-Teller (BET) specific surface area was characterized on the Micromeritics ASAP 2050. Surfacial element states was measured using X-ray photoelectron spectroscopy (XPS) performed on Escalab 250 Xi system.

Figure S1. XPS survey spectra of CoP-GC.

Figure S2. XPS survey spectra of CoP-MA

Figure S3. Polarization curves of CoP-MA and CoP-GC

Figure S4. The LSV curve after CA test

Figure S5. The turnover frequence of CoP-MA and CoP-GC

Figure S6. The equivalent-circuit diagram of CoP-GC electrodes for EIS measurement

Figure S7. SEM image of CoP-GC after the CA test for OER

Figure S8. XPS spectra of survey spectra (a), P 2p (b), Co 2p (c) and O 1s (d) of the CoP-GC after the OER stability tests

Electrocatalyst	Electrolyte	Loading (mg cm ⁻²)	Overpotential (mV)	Reference
CoP-MA CoP-GC	1 М КОН	0.25	340 310	This work
CoO _x -4h	1 M KOH	0.5	306	[1]
CoO-MoO ₂ Nanocages	1 M KOH	0.5	312	[2]
CoP hollow polyhedron	1 M KOH	0.102	400	[3]
Needle-shaped Co ₂ P	1 М КОН	Not mention	310	[4]
Co ₃ FeP _x O	1 M KOH	Not mention	291	[5]
CoP-MNA	1 М КОН	6.2	290	[6]
CoP/NC	1 M KOH	0.57	343	[7]
hollow Fe-CoP prisms	1 M KOH	1	236	[8]
Fe-CoP nanocages	1 M KOH	Not mention	300	[9]
Fe-NiCoP	1 M KOH	Not mention	235	[10]
CoP _x @CNS/NF	1 M KOH	Not mention	289	[11]

Table S1. OER performances comparison of reported cobalt-based electrocatalysts in

alkaline electrolyte.

References

- [1] W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, *Nano Energy*,2018, **43**, 110-116.
- [2] F. Lyu, Y. Bai, Z. Li, W. Xu, Q. Wang, J. Mao, L. Wang, X. Zhang, Y. Yin, Adv. Funct. Mater. 2017, 27, 1702324.
- [3] M. Liu, J. Li, ACS Appl. Mater. Inter. 2016, 8, 2158-2165.
- [4] A. Dutta, A. K. Samantara, S. K. Dutta, B. K. Jena, N. Pradhan, ACS Energy Lett.
 2016, 1, 169-174.
- [5] D. D. Babu, Y. Huang, G.Anandhababu, M. A.Ghausi, Y. Wang, *ACS Appl. Mater. Inter.* 2017, **9**, 38621-38628.
- [6] Y. P. Zhu, Y. P. Liu, T. Z. Ren, Z. Y. Yuan, Adv. Funct. Mater. 2015, 25, 7337-7347.
- [7] Z. Peng, Y. Yu, D. Jiang, Y. Wu, B. Y. Xia, Carbon. 2019, 144, 464-471.
- [8] X. D. Ding, H. T. Huang, Q. Wan, X. Guan, Y. X. Fang, S. Lin, D. Y. Chen, Z. L. Xie, J. Energy Chem. 2021, 62, 415-422.
- [9] J. Y. Xie, Z. Z. Liu, J. Li, L. Feng, M. Yang, Y. Ma, D. P. Liu, L. Wang, Y. M. Chai, B. Dong, *J. Energy Chem.* 2020, 48, 328-333.
- [10] B. He, C. Q. Peng, F. Ye, H. W. Gao, Y. Wang, Y. W. Tang, Q. L. Hao, H. K Liu,Z. Su, *CrystEngComm*, 2021, 23, 3861-3869.
- [11] C. C. Hou, L. L. Zou, Y. Wang, Q. Xu, Angew. Chem. Int. Ed., 2020, 59, 21360.