Supporting Information

Performance and Mechanism Analysis of Photocatalytic Degradation

of Tetracycline by SiC/CdS Composites

Sen Qian^a, Fen Qiao^a*, Lei Zhou^a, Yixian Liu^b, Wenjie Liu^a, Jing Yang^a, Tao

Wang^c, Haitao Li^{a,b*}

^a School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
 ^b Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R.

^o Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China

^cKey Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, 102206, Beijing, P. R.China

Figure S1. TEM images of SiC/CdS

Figure S2. EDS pattern of SiC/CdS composite photocatalyst.

Fig. S3. XPS survey spectrum of SiC/CdS

$$\alpha hv = A(hv - Eg)^{n/2}$$
(S1)

Where, α is the absorption coefficient, hv is the photon energy, and A is a constant. It can be noted that the band gap values of the composite samples decrease with the increasing proportion of CdS.

$$E_{fb} = E_{Ag/AgCl} + 0.059PH + E_{Ag/AgCl}$$
(S2)

$$(vs.Ag/AgCl,PH = 7, E_{Ag/AgCl}^{0} = 0.197 eV)$$

$$-\ln\left(C/C_0\right) = kt \tag{S3}$$

Where, C_0 and C are the absorbance concentrations of the solution before and after photodegradation, respectively, *k* represents the reaction rate, *t* represents the reaction time, and *k* values are obtained by fitting a linear function.

Ab initio simulation

The DFT calculations in this work are carried out by Vienna Ab initio Simulation Package (VASP) [1]. The supercell is too big so only gamma point is calculated in k-space. GGA-PBE[2] method is adopted as exchange-correlation functional and PAW[3, 4] is applied as pseudo-potential. The energy cutoff is 400eV and the atoms are relaxed until the atomic force decreases under 0.01eV•A⁻¹.

Figure S4. The optimized structures of SiC in the direction of a) a-axis b) b-axis, and c) c-axis.

Figure S5. The optimized structures of SiC/CdS in the direction of a) a-axis b) baxis, and c) c-axis.

Figure S6. Degradation rate of tetracycline without catalyst.

Figure S7. XRD comparison before and after four cycles

Figure S8. Schematic diagram of the photocatalytic mechanism of SiC/CdS heterojunction.

Figure S9 The schematic diagram of the transient photovoltage test system

Photocatalyst	Concentra-	Dosage	Irradiation	Light	Degradation	Dof	
	tion (mg/L)	(g/L)	time (min)	source	rate (%)	Kel.	
Fe/g-C3N4/	20	0.385	80	Xe	88.1	[5]	

 Table S1. Comparison with other photocatalysts in the literature for the degradation of tetracycline

Kaolinite				500 W		
SnS ₂ @ZnLn ₂ S	40	0.20	60	Xe	<u> </u>	[6]
4@Kaolinite	40	0.20	00	300 W	00.23	[0]
CdS/Ti ₃ C ₂	10	0.50	60	Xe	96.3	[7]
	10			300W		
Fe based MOF	50	0.50	180	Xe	52	[8]
				500 W		
WO ₃ /C ₃ N ₄ /NC	20	1.00	30	LED	96.3	[9]
QDs	20			18 W		
Bi ₂ O ₂ CO ₃ /Ti ₃ C	20	0.50	120	Xe	31.0	[10]
2	20			300 W		
ZnO/CeO ₂ @H	20	0.30	60	Xe	87.0	[11]
NTs	20			300W		
SiC/CdS-0.5	20	0.33	120	Xe	78	This
				150 W		word

References

[1] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54(16) (1996) 11169-11186.

[2] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18) (1996) 3865-3868.

[3] P.E. Blöchl, Projector augmented-wave method, Physical Review B 50(24) (1994) 17953-17979.

[4] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59(3) (1999) 1758-1775.

[5] Z. Cao, Y. Jia, Q. Wang, H. Cheng, High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation, Applied Clay Science 212 (2021) 106213.

[6] Y. Li, B. Yu, Z. Hu, H. Wang, Construction of direct Z-scheme SnS2@ ZnIn2S4@ kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride, Chemical Engineering Journal 429 (2022) 132105.

[7] Q. Zhu, Y. Sun, F. Na, J. Wei, S. Xu, Y. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Applied Catalysis B: Environmental 254 (2019) 541-550.
[8] U. Ghosh, A. Pal, Insight into the multiple roles of nitrogen doped carbon quantum dots in an

ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination, Chemical Engineering Journal 431 (2022) 133914.

[9] T. Guo, K. Wang, G. Zhang, X. Wu, A novel α -Fe2O3@ g-C3N4 catalyst: synthesis derived from Febased MOF and its superior photo-Fenton performance, Applied Surface Science 469 (2019) 331-339.

[10] B. Tan, Y. Fang, Q. Chen, X. Ao, Y. Cao, Construction of Bi2O2CO3/Ti3C2 heterojunctions for enhancing the visible-light photocatalytic activity of tetracycline degradation, Journal of Colloid and Interface Science 601 (2021) 581-593.

[11] Z. Ye, J. Li, M. Zhou, H. Wang, Y. Ma, P. Huo, L. Yu, Y. Yan, Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline, Chemical Engineering Journal 304 (2016) 917-933.