Supplementary Material (ESI)

Bis-pyridyl-bis-amide-modulated a series of metal-organic

frameworks: Formation, transformation and selectivity for the

efficient detection of multiple analytes

Xiao-Sa Zhang,^a Yan Liu,^a Yu Liu,^a Lin-Jiu Xiao,^{a*} Jia-Liang Cui,^a Hong Xiang,^a Jian

Luan^{b*} and Wen-Ze Li^{a*}

^a College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

^b College of Sciences, Northeastern University, Shenyang, 100819, P. R. China

E-mails: x109@163.com (L. J. Xiao); 2010044@stu.neu.edu.cn (J. Luan); liwenze@syuct.edu.cn (W. Z. Li)

Complex	1	2	3	4	4 a	4b
Empirical formula	C ₂₆ H ₂₀ N ₄ O ₇ Zn	C ₂₆ H ₂₂ N ₄ O ₈ Zn	C ₂₆ H ₁₈ CdN ₄ O ₆	$C_{65}H_{49}Cd_2N_{11}O_{15}$	$C_{55}H_{43}Cd_2N_9O_{13}$	$C_{55}H_{43}Cu_2N_9O_{13}$
Formula weight	565.83	583.85	594.84	1448.95	1262.78	1165.06
Crystal system	Triclinic	Orthorhombic	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	P-l	Ccca	P-l	P-1	P 21/c	P 21/c
a (Å)	7.9323(17)	17.6671(6)	4.9600(5)	10.7737(9)	10.7456(5)	10.7796(7)
b (Å)	11.895(3)	19.4948(6)	10.1397(11)	14.7826(11)	36.5825(16)	36.563(2)
<i>c</i> (Å)	12.694(3)	15.5450(5)	11.8715(12)	20.3526(16)	15.7867(7)	15.8187(10)
α (°)	97.585(4)	90	67.798(2)	90.830(2)	90	90
β (°)	101.921(4)	90	81.007(2)	91.007(2)	98.1640(10)	97.9780(10)
γ (°)	94.309(4)	90	86.591(2)	109.013(2)	90	90
$V(Å^3)$	1155.1(5)	5354.0(3)	545.99(10)	3063.4(4)	6142.9(5)	6174.3(7)
Ζ	2	8	1	2	4	4
$D_c (\text{g cm}^-$ ³)	1.627	1.449	1.809	1.571	1.365	1.253
$R_{\rm int}$	0.0518	0.0197	0.0135	0.0372	0.0295	0.0438
GOF	1.010	1.059	1.028	1.074	1.047	1.043
$R_{I}^{a} [I > 2\sigma(I)]$	0.0568	0.0289	0.0231	0.0849	0.0580	0.0900
wR_2^b (all data)	0.1367	0.0842	0.0564	0.2209	0.1550	0.2844

Table S1. Crystallographic data for complexes 1–4.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, ^b $wR_2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$.

		• • • • •	
Zn(1)–O(1)	1.979(3)	Zn(1)–O(3)	2.123(3)
Zn(1)-N(1)	2.080(4)	Zn(1)–O(4)	2.163(3)
Zn(1)-N(2)	2.120(5)	Zn(1)–C(23)	2.471(5)
O(1)-Zn(1)-N(1)	92.13(14)	N(2)–Zn(1)–O(4)	94.07(16)
O(1)-Zn(1)-N(2)	96.71(15)	O(3)–Zn(1)–O(4)	61.33(13)
N(1)–Zn(1)–N(2)	106.92(16)	O(1)–Zn(1)–C(23)	138.33(17)
O(1)–Zn(1)–O(3)	108.23(14)	N(1)–Zn(1)–C(23)	118.44(16)
N(1)–Zn(1)–O(3)	141.64(15)	N(2)–Zn(1)–C(23)	100.03(16)
N(2)-Zn(1)-O(3)	102.65(15)	O(3)–Zn(1)–C(23)	30.73(15)
O(1)–Zn(1)–O(4)	166.55(16)	O(4)–Zn(1)–C(23)	30.60(15)
N(1)–Zn(1)–O(4)	92.40(14)		

Table S2. Selected bond distances (Å) and angles (°) for complex 1.

 Table S3. Selected bond distances (Å) and angles (°) for complex 2.

Zn(1)-O(1)#1	1.9601(11)	Zn(1)–N(1)#1	2.0747(12)		
Zn(1)–O(1)	1.9601(11)	Zn(1)-N(1)	2.0748(12)		
O(1)#1–Zn(1)–O(1)	133.29(8)	O(1)#1-Zn(1)-N(1)	106.26(5)		
O(1)#1-Zn(1)-N(1)#1	106.31(6)	O(1)-Zn(1)-N(1)	106.32(6)		
O(1)–Zn(1)–N(1)#1	106.26(5)	N(1)#1-Zn(1)-N(1)	89.95(7)		
Symmetry code: $\#1 - x + 3/2, -y, z$.					

Table S4. Selected bond distances (Å) and angles (°) for complex 3.

Cd(1)–N(1)#1	2.2597(15)	Cd(1)-O(1)#1	2.3196(14)			
Cd(1)–N(1)	2.2597(15)	Cd(1)-O(2)#2	2.4154(13)			
Cd(1)–O(1)	2.3196(14)	Cd(1)–O(2)#3	2.4154(13)			
N(1)#1Cd(1)N(1)	180	O(1)-Cd(1)-O(2)#2	84.19(6)			
N(1)#1Cd(1)O(1)	92.05(6)	O(1)#1-Cd(1)-O(2)#2	95.81(6)			
N(1)Cd(1)O(1)	87.95(6)	N(1)#1-Cd(1)-O(2)#3	87.25(5)			
N(1)#1-Cd(1)-O(1)#1	87.95(6)	N(1)-Cd(1)-O(2)#3	92.75(5)			
N(1)Cd(1)O(1)#1	92.05(6)	O(1)-Cd(1)-O(2)#3	95.81(6)			
O(1)Cd(1)O(1)#1	180	O(1)#1-Cd(1)-O(2)#3	84.19(6)			
N(1)#1-Cd(1)-O(2)#2	92.75(5)	O(2)#2Cd(1)O(2)#3	180			
N(1)-Cd(1)-O(2)#2	87.25(5)					
Symmetry codes: $\#1 - x, -y, -z; \#2 x - 1, y, z; \#3 - x + 1, -y, -z.$						

Cd(1)–N(2)	2.297(8)	Cd(2)-O(6)#1	2.303(5)			
Cd(1)–O(8)	2.324(5)	Cd(2)–N(3)	2.314(6)			
Cd(1)–N(1)	2.325(7)	Cd(2)–N(4)	2.328(6)			
Cd(1)-O(5)	2.368(5)	Cd(2)–O(3)	2.365(5)			
Cd(1)–O(1)	2.396(5)	Cd(2)-O(7)#1	2.371(5)			
Cd(1)-O(2)	2.433(5)	Cd(2)–O(4)	2.424(5)			
Cd(1)–O(7)	2.645(5)	Cd(2)–C(44)	2.742(6)			
N(2)-Cd(1)-O(8)	90.6(3)	O(6)#1-Cd(2)-N(3)	89.9(2)			
N(2)-Cd(1)-N(1)	178.5(3)	O(6)#1-Cd(2)-N(4)	89.7(2)			
O(8)–Cd(1)–N(1)	89.0(2)	N(3)-Cd(2)-N(4)	176.8(2)			
N(2)Cd(1)O(5)	92.8(2)	O(6)#1Cd(2)O(3)	88.18(18)			
O(8)–Cd(1)–O(5)	135.8(2)	N(3)-Cd(2)-O(3)	90.7(2)			
N(1)Cd(1)O(5)	86.4(2)	N(4)Cd(2)O(3)	92.5(2)			
N(2)Cd(1)O(1)	91.1(2)	O(6)#1-Cd(2)-O(7)#1	134.81(19)			
O(8)–Cd(1)–O(1)	86.71(19)	N(3)-Cd(2)-O(7)#1	92.3(2)			
N(1)Cd(1)O(1)	90.3(2)	N(4)-Cd(2)-O(7)#1	85.7(2)			
O(5)-Cd(1)-O(1)	137.18(19)	O(3)-Cd(2)-O(7)#1	136.88(17)			
N(2)Cd(1)O(2)	92.3(3)	O(6)#1-Cd(2)-O(4)	142.34(19)			
O(8)–Cd(1)–O(2)	140.28(19)	N(3)-Cd(2)-O(4)	92.4(2)			
N(1)Cd(1)O(2)	88.9(2)	N(4)-Cd(2)-O(4)	89.8(2)			
O(5)–Cd(1)–O(2)	83.6(2)	O(3)-Cd(2)-O(4)	54.24(17)			
O(1)–Cd(1)–O(2)	53.65(18)	O(7)#1-Cd(2)-O(4)	82.65(18)			
N(2)-Cd(1)-O(7)	84.4(2)	O(6)#1-Cd(2)-C(44)	115.4(2)			
O(8)-Cd(1)-O(7)	51.57(18)	N(3)-Cd(2)-C(44)	92.0(2)			
N(1)-Cd(1)-O(7)	94.2(2)	N(4)-Cd(2)-C(44)	91.1(2)			
O(5)–Cd(1)–O(7)	84.96(18)	O(3)-Cd(2)-C(44)	27.31(18)			
O(1)–Cd(1)–O(7)	137.85(17)	O(7)#1-Cd(2)-C(44)	109.6(2)			
O(2)–Cd(1)–O(7)	167.93(18)	O(4)-Cd(2)-C(44)	26.93(19)			
Symmetry code: #1 x , y – 1, z .						

 Table S5. Selected bond distances (Å) and angles (°) for complex 4.

Cd(1)–O(2)#1	2.275(4)	Cd(2)–O(13)	2.352(4)		
Cd(1)–O(1)	2.329(4)	Cd(2)–N(4)#2	2.355(3)		
Cd(1)-N(1)	2.344(4)	Cd(2)-O(3)	2.371(3)		
Cd(1)–N(2)#2	2.350(4)	Cd(2)–O(6)	2.382(4)		
Cd(1)–O(8)#3	2.379(3)	Cd(2)–O(5)	2.416(4)		
Cd(1)–O(7)#3	2.412(3)	Cd(2)–O(4)	2.455(3)		
Cd(1)-C(52)#3	2.733(4)	Cd(2)–C(45)	2.736(4)		
Cd(2)–N(3)	2.322(4)	Cd(2)–C(44)	2.747(4)		
O(2)#1-Cd(1)-O(1)	121.11(13)	N(4)#2Cd(2)O(6)	92.66(14)		
O(2)#1-Cd(1)-N(1)	93.96(15)	O(3)–Cd(2)–O(6)	79.22(12)		
O(1)-Cd(1)-N(1)	87.77(15)	N(3)-Cd(2)-O(5)	91.25(14)		
O(2)#1-Cd(1)-N(2)#2	94.88(15)	O(13)–Cd(2)–O(5)	87.77(15)		
O(1)-Cd(1)-N(2)#2	87.92(15)	N(4)#2Cd(2)O(5)	89.76(13)		
N(1)-Cd(1)-N(2)#2	171.15(15)	O(3)–Cd(2)–O(5)	133.31(13)		
O(2)#1-Cd(1)-O(8)#3	139.65(13)	O(6)-Cd(2)-O(5)	54.47(13)		
O(1)-Cd(1)-O(8)#3	99.25(12)	N(3)-Cd(2)-O(4)	85.86(13)		
N(1)-Cd(1)-O(8)#3	86.91(13)	O(13)–Cd(2)–O(4)	84.83(14)		
N(2)#2Cd(1)O(8)#3	86.16(13)	N(4)#2Cd(2)O(4)	91.94(12)		
O(2)#1-Cd(1)-O(7)#3	85.19(12)	O(3)–Cd(2)–O(4)	53.91(11)		
O(1)-Cd(1)-O(7)#3	153.58(12)	O(6)-Cd(2)-O(4)	133.04(12)		
N(1)-Cd(1)-O(7)#3	87.82(14)	O(5)–Cd(2)–O(4)	172.15(12)		
N(2)#2Cd(1)O(7)#3	92.62(14)	N(3)-Cd(2)-C(45)	93.33(14)		
O(8)#3-Cd(1)-O(7)#3	54.50(12)	O(13)-Cd(2)-C(45)	115.28(17)		
O(2)#1-Cd(1)-C(52)#3	112.52(14)	N(4)#2Cd(2)C(45)	91.80(13)		
O(1)-Cd(1)-C(52)#3	126.37(14)	O(3)–Cd(2)–C(45)	105.94(14)		
N(1)-Cd(1)-C(52)#3	87.89(14)	O(6)-Cd(2)-C(45)	26.93(15)		
N(2)#2-Cd(1)-C(52)#3	88.45(14)	O(5)–Cd(2)–C(45)	27.55(15)		
O(8)#3-Cd(1)-C(52)#3	27.13(13)	O(4)–Cd(2)–C(45)	159.84(14)		
O(7)#3-Cd(1)-C(52)#3	27.39(13)	N(3)-Cd(2)-C(44)	84.52(14)		
N(3)-Cd(2)-O(13)	87.77(15)	O(13)-Cd(2)-C(44)	111.55(15)		
N(3)-Cd(2)-N(4)#2	170.79(14)	N(4)#2-Cd(2)-C(44)	97.54(13)		
O(13)-Cd(2)-N(4)#2	83.12(15)	O(3)–Cd(2)–C(44)	27.13(12)		
N(3)-Cd(2)-O(3)	87.15(14)	O(6)-Cd(2)-C(44)	106.35(13)		
O(13)–Cd(2)–O(3)	138.68(14)	O(5)-Cd(2)-C(44)	159.97(14)		
N(4)#2Cd(2)O(3)	98.79(14)	O(4)-Cd(2)-C(44)	26.86(12)		
N(3)-Cd(2)-O(6)	95.37(14)	C(45)-Cd(2)-C(44)	133.00(15)		
O(13)-Cd(2)-O(6)	142.10(15)				
Symmetry codes: #1 $-x$, $-y + 1$, $-z$; #2 $x - 1$, y , $z + 1$; #3 $x + 1$, $-y + 1/2$, $z + 1/2$.					

Table S6. Selected bond distances (Å) and angles (°) for complex 4a.

Cu(1)–O(1)	2.275(7)	Cu(2)–N(2)#1	2.328(8)			
Cu(1)–N(6)#1	2.328(8)	Cu(2)–O(13)	2.356(8)			
Cu(1)–N(5)	2.333(7)	Cu(2)–O(4)#4	2.375(7)			
Cu(1)–O(2)#2	2.341(8)	Cu(2)–O(6)	2.379(7)			
Cu(1)–O(7)	2.386(6)	Cu(2)–O(5)	2.426(7)			
Cu(1)–O(8)	2.409(7)	O(2)–Cu(1)#2	2.341(7)			
N(1)–Cu(2)	2.355(7)	O(4)–Cu(2)#5	2.375(7)			
N(2)-Cu(2)#3	2.329(8)	N(6)–Cu(1)#3	2.328(8)			
O(1)-Cu(1)-N(6)#1	93.6(3)	N(2)#1-Cu(2)-N(1)	170.1(3)			
O(1)–Cu(1)–N(5)	94.8(3)	N(2)#1-Cu(2)-O(13)	87.2(3)			
N(6)#1-Cu(1)-N(5)	171.6(3)	N(1)-Cu(2)-O(13)	83.3(3)			
O(1)-Cu(1)-O(2)#2	121.3(2)	N(2)#1-Cu(2)-O(4)#4	87.5(3)			
N(6)#1-Cu(1)-O(2)#2	88.5(3)	N(1)-Cu(2)-O(4)#4	97.9(3)			
N(5)-Cu(1)-O(2)#2	87.7(3)	O(13)-Cu(2)-O(4)#4	138.3(3)			
O(1)–Cu(1)–O(7)	139.4(3)	N(2)#1-Cu(2)-O(6)	96.1(3)			
N(6)#1-Cu(1)-O(7)	86.9(3)	N(1)-Cu(2)-O(6)	93.2(3)			
N(5)-Cu(1)-O(7)	86.3(3)	O(13)-Cu(2)-O(6)	143.0(3)			
O(2)#2Cu(1)O(7)	99.3(2)	O(4)#4Cu(2)O(6)	78.7(2)			
O(1)–Cu(1)–O(8)	84.3(2)	N(2)#1-Cu(2)-O(5)	92.1(3)			
N(6)#1-Cu(1)-O(8)	87.9(3)	N(1)-Cu(2)-O(5)	90.2(3)			
N(5)-Cu(1)-O(8)	92.2(3)	O(13)-Cu(2)-O(5)	87.8(3)			
O(2)#2-Cu(1)-O(8)	154.3(2)	O(4)#4–Cu(2)–O(5)	133.7(3)			
O(7)–Cu(1)–O(8)	55.1(2)	O(6)-Cu(2)-O(5)	55.3(2)			
Symmetry codes: $\#1 + 1 + 2 - 1 + 2 - 2 + 1 + 2 - 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 2 +$						

Table S7. Selected bond distances (Å) and angles (°) for complex 4b.

Symmetry codes: #1 x + 1, y, z - 1; #2 -x, -y + 1, -z + 1; #3 x - 1, y, z + 1; #4 -x + 1, y - 1/2, -z + 3/2; #5 -x + 1, y + 1/2, -z + 3/2.

	Complex 1		Complex 2		Complex 3		Complex 4	
Analyte	K _{sv} (M ⁻	LOD (M)	K _{sv} (M ⁻	LOD (M)	K _{sv} (M ⁻	LOD (M)	K _{sv} (M⁻ ¹)	LOD (M)
Fe ³⁺	1.38×10 ⁴	1.41×10 ⁻⁴	1.10×10 ⁴	1.62×10 ⁻⁴	1.27×10 ⁴	5.63×10 ⁻⁵	2.89×10 ³	2.03×10 ⁻⁴
CrO ₄ ²⁻	6.69×10 ³	7.80×10 ⁻⁴	4.63×10 ³	1.26×10-4	6.87×10 ⁴	2.20×10-2	4.52×10 ²	2.63×10-5
$Cr_2O_7^{2-}$	5.43×10 ³	3.63×10 ⁻⁵	6.80×10 ⁴	1.98×10 ⁻⁴	4.26×10 ⁴	1.21×10 ⁻²	2.36×10 ⁴	3.11×10 ⁻⁵
MnO ₄ -	6.99×10 ³	1.09×10-3	3.88×10 ⁴	4.03×10-5	4.77×10 ⁴	8.79×10 ⁻⁴	5.73×10 ²	3.17×10-4
DMSO	3.70×10 ³	1.21×10 ⁻³	1.36×10 ³	1.40×10 ⁻²	1.06×10 ³	8.02×10 ⁻³	0.92×10 ²	2.68×10-3
NB	1.65×10 ³	5.71×10 ⁻³	1.71×10 ³	2.25×10 ⁻²	9.75×10 ²	9.45×10 ⁻³	2.38×10 ²	1.35×10 ⁻²
NM	2.82×10 ³	4.69×10 ⁻³	1.89×10 ³	2.29×10 ⁻²	9.75×10 ²	1.22×10 ⁻²	2.39×10 ²	4.61×10-3
AH	1.26×10 ³	1.35×10 ⁻²	1.11×10 ³	4.63×10 ⁻²	7.87×10^{2}	1.41×10 ⁻²	1.65×10 ²	2.26×10 ⁻²

Table S8 $K_{\rm sv}$ values and LOD of complexes 1–4 for different analytes.

Fig. S1 The PXRD patterns for complexes 4a and 4b.

Fig. S2 The IR spectra of complexes 1–4 before and after being soaked in different analyzes.

Fig. S3 The TG curves of complexes 1–4.

Fig. S4 The emission spectra of the ligands and complexes 1–4.

Fig. S5 Luminescence spectra of complexes 1–4 in different metal ion solutions.

Supplementary Material (ESI)

Fig. S6 Luminescence spectra of complexes 1–4 after the addition of various metal cations.

Fig. S7 Luminescence spectra of complexes 1–4 after the addition of various oxygen anions.

Fig. S8 Fluorescence spectra of complexes 1–4 after the addition of some other aromatic solvents.