Low-temperature synthesis of NaRE(WO₄)₂ films via sacrificial conversion from the layered rare-earth hydroxides, phase/morphology evolution, and photoluminescence

Xiaoli Wu^{1,2,3*}, Haocheng Dong¹, Sen Qin¹, Yongping Guo¹

1 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China;

2 Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China;

3 Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi; Guilin University of Technology, Guilin 541004, China;

*Corresponding author

E-mail address: wuxiaoli@glut.edu.cn

Fig. S1 XRD patterns (a) and FT-IR spectra (b) of $NaLa(WO_4)_2$ films obtained via further heat treatment at 150 °C, 300 °C, and 500 °C.

Fig. S2 XRD patterns of anion exchanged films prepared with different concentration of Na_2WO_4 solutions at 100 °C.

Fig. S3 XRD patterns of anion exchanged films synthesized prepared with 1.5M Na₂WO₄ solutions at different temperatures.

Fig. S4 SEM morphologies of anion exchanged films synthesized prepared with 1.5M Na₂WO₄ solutions at different temperatures.

Fig. S5 XRD patterns of the NaRE(WO₄)₂ (RE=Tb, Dy, Ho and Y) films prepared with $2M Na_2WO_4$ solution at 100 °C for 6h.

Fig. S6 FE-SEM images of the NaRE(WO₄)₂ (RE=Tb, Dy, Ho and Y) films prepared with 2M Na₂WO₄ solution at 100 °C for 6h.