Supporting Information

Imidazole-based AIEgens for highly sensitive and selective detection of picric acid

Yuzhu Zhang, ^{a,1} Fang Tang, ^{b,1} Xuan He, ^a Chengyuan Wang, ^a Lin Kong, ^a Jiaxiang Yang,^{a,*} and Aixiang Ding ^{b,*}

^aCollege of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric Conversion Energy Materials and Devices Key Laboratory of Anhui Province, Anhui University, Hefei, 230061, PR China. Email: jxyang@ahu.edu.cn ^bThe Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, PR China. Email: dingaixiangwo@gamil.com ¹These authors contributed equally to this work.

Synthesis

Scheme S1. Synthetic routes of compounds M1, M2, M3, and M4.

Synthesis of compound 1

Phenanthrenequinone (1.00g, 4.80 mmol) and tetraphenyl monaldehyde (2.08 g, 5.76 mmol) were dissolved in anhydrous acetic acid (30 mL) at room temperature. 2-(4-Aminophenyl) acetonitrile (0.95 g, 7.20 mmol) was dissolved in glacial acetic acid (10 mL) and was gradually added into this mixture solution. The mixture was stirred for 2 h at 25 °C. Then, ammonium acetate (1.48 g, 19.21 mmol) was added and the mixture was heated to 120 °C for 12 h. The final mixture was poured into brine (200mL) and was neutralized with NaOH aqueous solution. A large amount of precipitate was filtered and washed with ethanol to afford green compound 1(2.00 g, 3.01 mmol). Yield: 63%. FT-IR (KBr, cm⁻¹): 3053, 3022, 2920, 2251, 1611, 1514, 1447, 1148, 1022, 753, 700. ¹H NMR (CDCl₃, 400 MHz, ppm) δ : 3.95 (s, 2H), 6.95-7.01 (m, 8H), 7.09-7.17 (m, 10H), 7.25-7.27 (m, 2H), 7.47-7.55 (m, 5H), 7.64 (t, *J* =7.68 Hz, 1H), 7.73 (t, *J* = 7.16 Hz, 1H), 8.69 (d, *J* = 8.20 Hz, 1H), 8.76 (d, *J* = 8.20 Hz, 1H), 8.83 (d, *J* = 8.00 Hz, 1H).

Synthesis of compound 2

Phenanthrenequinone (1.00 g, 4.80 mmol) and tetraphenyl monaldehyde (2.08 g, 5.76 mmol) were dissolved in anhydrous acetic acid (30 mL) at room temperature. 2-(4-Aminophenyl) acetonitrile (0.95 g, 7.20 mmol), was dissolved in glacial acetic acid

(10 mL) and was gradually added into this mixture solution. The mixture was stirred for 2 h at 25 °C. Then, ammonium acetate (1.48 g, 19.21 mmol) was added and the mixture was heated to 120 °C for 12 h. The final mixture was poured into brine (200 mL) and was neutralized with NaOH aqueous solution. A large amount of precipitate was filtered and washed with ethanol to afford green compound **1** (2.00 g, 3.47 mmol). Yield: 72%. FT-IR (KBr, cm⁻¹): 3058, 3035, 2244, 1588, 1515, 1445, 1325, 1270, 1171, 758, 694. ¹H NMR (CDCl₃, 400 MHz, ppm) δ : 3.74 (s, 2H), 6.90 (d, *J* = 8.72 Hz, 2H), 7.06-7.11 (m, 10H), 7.24-7.32 (m, 14H), 7.63 (d, *J* = 7.80 Hz, 2H).

Synthesis of compound M1

Compound 1 (0.3g, 0.45 mmol) and TPE-CHO (0.17g, 0.47 mmol) were uniformly dispersed in ethanol (20 mL) at 80 °C. Soon afterwards, t-BuOK (0.10 g, 0.90 mmol) was added. The reaction mixture was refluxed for 4 h. The final mixture was poured into brine (200 mL). The generated green precipitate was filtered and further purified by column chromatography (petroleum ether: ethyl acetate = 4:1, v/v) to afford compound M1 (0.37 g, 0.37 mmol). Yield: 81%. FT-IR (KBr, cm⁻¹): 3052, 30234, 2923, 2849, 2215, 1598, 1513, 1444, 1186, 853, 752, 672. ¹H NMR (CDCl₃, 400 MHz, ppm) δ: 6.95-7.27 (m, 3H), 7.59 (s, 1H), 7.64 (d, *J* = 7.70 Hz, 1H), 7.71-7.76 (m, 3H), 7.82 (d, J = 7.70 Hz, 2H), 8.69 (d, J = 8.40 Hz, 1H), 8.76 (d, J = 8.40 Hz, 1H), 8.83 (d, J = 7.92 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz, ppm) δ : 117.85, 120.74, 122.79, 122.83, 123.12, 124.23, 125.01, 125.73, 126.39, 126.62, 126.84, 127.00, 127.11, 127.22, 127.35, 127.68, 127.73, 127.68, 127.73, 127.89, 127.94, 128.09, 128.29, 128.74, 129.03, 129.30, 129.75, 131.23, 131.30, 131.37, 131.44, 132.12, 135.83, 137.60, 139.13, 139.93, 140.16, 141.74, 142.72, 143.08, 143.26, 143.37, 143.44, 143.50, 144.61, 147.28, 150.92. HR-MS (APCI-MS): m/z [(M+H)⁺] calcd : 1006.4083, found = 1006.4161.

Synthesis of compound M2

Compound 1 (0.20 g, 0.30 mmol) and TPA-CHO (0.91 g, 0.33 mmol) were uniformly dispersed in ethanol (20 mL) at 80 °C. Soon afterwards, *t*-BuOK (0.068 g, 0.60 mmol) was added. The reaction mixture was refluxed for 4 h. The final mixture was poured into brine (100 mL). The generated green precipitate was filtered and further purified by column chromatography (petroleum ether: ethyl acetate = 4:1, v/v) to afford compound **M2** (0.20 g, 0.22 mmol). Yield: 72%. FT-IR (KBr, cm⁻¹): 3055, 3024, 2922, 2849, 2214, 1592, 1489, 1445, 1279, 1028, 751, 698. ¹H NMR (CDCl₃, 400 MHz, ppm) δ : 6.82 (d, *J* = 8.88 Hz, 1H), 6.90-7.21 (m, 27H), 7.24-7.39 (m, 8H), 7.43-7.51 (m, 2H), 7.60-7.66 (m, 2H), 7.70-7.74(m, 1H), 7.81-7.88 (m, 2H), 8.68-8.70 (m, 1H), 8.73-8.77 (m, 1H), 8.81-8.84 (m, 1H). ¹³C NMR (CHCl₃, 100 MHz, ppm) δ : 109.31, 117.96, 120.72, 121.96, 122.90, 122.99, 123.19, 123.37, 123.69, 124.31, 124.93, 125.23, 125.73, 126.46, 126.90, 127.07, 127.38, 127.22, 127.49, 127.81, 127.97, 128.02, 128.34, 129.13, 129.28, 129.47, 129.96, 130.20, 131.32, 131.38, 131.45, 132.16, 136.08, 137.69, 139.50, 140.01, 143.17, 142.77, 143.34, 143.52, 147.24, 147.32, 148.63, 150.98. HR-MS (APCI-MS): m/z [(M+H)⁺] calcd : 919.3722, found = 919.3813.

Synthesis of compound M3

Compound **2** (0.15 g, 0.23 mmol) and TPE-CHO (0.068 g, 0.25 mmol) were uniformly dispersed in ethanol (20 mL) at 80 °C. Soon afterwards, *t*-BuOK (0.051 g, 0.45 mmol) was added. The reaction mixture was refluxed for 4 h. The final mixture was poured into brine (100 mL). The generated green precipitate was filtered and further purified by column chromatography (petroleum ether : ethyl acetate = 4 : 1, v/v) to afford compound **M3** (0.15 g, 0.16 mmol). Yield: 72%. FT-IR (KBr, cm⁻¹): 3055, 3024, 2922, 2849, 2214, 1592, 1489, 1445, 1279, 1028, 751, 698. ¹H NMR (CDCl₃, 400 MHz, ppm) δ : 6.95-7.29 (m, 33H), 7.49-7.53 (m, 3H), 7.59 (s, 1H), 7.64 (t, *J* = 7.72 Hz, 1H), 7.71-7.76 (m, 3H), 7.82 (d, *J* = 7.68 Hz, 2H), 8.69 (d, *J* = 8.24 Hz, 1H), 8.76 (d, *J* = 8.44 Hz, 1H), 8.83 (d, *J* = 7.92 Hz, 1H). ¹³C NMR (CHCl₃, 100 MHz, ppm) δ : 109.15, 120.06, 120.67, 122.89, 123.17, 124.28, 124.79, 125.03, 125.29, 125.81, 125.96, 1226.10, 126.25, 126.72, 127.44, 127.74, 127.81, 127.89, 128.08, 128.33, 128.84, 129.38, 129.76, 129.97, 130.81, 131.39, 131.43, 131.49, 135.03, 137.71, 139.20, 140.21, 141.82, 143.23, 143.51, 144.85, 145.46, 146.37, 150.23, 151.03. HR-MS (APCI-MS): m/z [(M+H)⁺] calcd : = 918.3722, found = 918.3828.

Synthesis of compound M4

Compound 2 (0.20 g, 0.35 mmol) and TPA-CHO (0.10 g, 0.38 mmol) were uniformly dispersed in ethanol (20 mL) at 80 °C. Soon afterwards, t-BuOK (0.078 g, 0.38 mmol) was added. The reaction mixture was refluxed for 4 h. The final mixture was poured into brine (100 mL). The generated green precipitate was filtered and further purified by column chromatography (petroleum ether : ethyl acetate = 4 : 1, v/v) to afford compound M4 (0.20 g, 0.24 mmol). Yield: 69%. FT-IR (KBr, cm⁻¹): 3058, 3034, 2921, 2847, 2365, 2198, 1589, 1489, 1332, 1279, 1195, 1074, 828, 749, 692, 508. ¹H NMR (CDCl₃, 400 MHz, ppm) δ : 6.96 (d, J = 8.84 Hz, 2H), 7.02-7.36 (m, 24H), 7.44 (d, J = 8.84 Hz, 2H), 7.51 (t, J = 8.24 Hz, 1H), 7.59 (d, J = 8.24 Hz, 3H), 7.65 (t, J = 8.36 Hz, 1H), 7.73 (d, J = 7.08 Hz, 1H), 7.85 (q, J = 8.60 Hz, 4H), 8.70 (t, J = 8.28Hz, 1H), 8.77 (d, J = 8.32 Hz, 1H), 8.86 (d, J = 8.00 Hz, 1H). ¹³C NMR (CHCl₃, 100 MHz, ppm) δ: 106.05, 118.66, 120.29, 120.50, 120.77, 121.97, 122.91, 123.03, 123.19, 123.69, 124.28, 124.72, 124.83, 124.92, 125.18, 125.23, 125.71, 125.84, 125.90, 126.07, 126.48, 127.21, 127.37, 128.01, 128.35, 129.26, 129.48, 129.76, 129.85, 130.22, 131.13, 136.53, 137.61, 138.92, 143.25, 146.50, 147.25, 148.62, 150.62, 150.99. HR-MS (APCI-MS): m/z [(M+H)⁺] calcd : 832.3362, found = 832.3439.

Fig. S1. The TGA curve of compounds M1, M2, M3, and M4.

|--|

Identification code	M3	Volume	5791.5(2) Å ³
Empirical formula	$C_{68}H_{46}N_4$	Z, Calculated density	4, 1.054 g cm ⁻³
Formula weight	919.09	Absorption coefficient	0.472 mm ⁻¹
Temperature	273.15 K	<i>F</i> (000)	1928.0
Wavelength	1.54178 Å	2θ range for data collection	4.128 to 137.984°
Crystal system	monoclinic		$-25 \le h \le 25$
Space group	P-2 ₁ /C	Index ranges	$-33 \le k \le 33$
а	21.4031(5) Å		$-11 \le l \le 10$
b	27.8054(6) Å	Data/restraints/para meters	10684/1/650
С	9.7334(2) Å	Goodness-of-fit on F ²	0.991
α	90°	Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0763, wR_2 = 0.2052$
β	91.110(2)°	Final <i>R</i> indices (all data)	$R_1 = 0.1259, wR_2 = 0.2524$
		Reflections collected	109458
γ	90°	Independent reflections	$10684 [R_{int} = 0.1167, R_{sigma} = 0.0494]$

С-H···π 2.713Å С-H···π 2.773Å С-H···π 2.834Å

Fig. S2. The weak interactions in the single crystal of M3.

Table S2 A summary	of weak in	nteractions of	compound	M3 in	its crystalline	phase.
--------------------	------------	----------------	----------	--------------	-----------------	--------

Compound	Intermolecular Interactions	Selected bond distances/[Å]		
M3	C9-H9…N2	2.727		
	С8-Н8…π	2.886		
	С12-Н12…π	2.835		
	С48-Н48…π	2.834		
	C56 1156 -	2.713		
	С30-Н30… П	2.773		

Compounds	Solvents	$\lambda_{\max}^{[a]}$	$\lambda_{\max}^{[b]}$	ε (× 10 ⁴) ^[c]	$\Delta v/cm^{-1}$ [d]	$\Phi^{[e]}$
	benzene	368	503	5.27	7293	
	DCM	367	518	4.63	7943	
	THF	367	511	4.74	7679	
M1	EA	363	509	4.48	7902	0.61
	EtOH	362	503	3.69	7744	
	acetonitrile	362	497	3.63	7504	
	DMF	365	515	3.90	7980	
	benzene	369	506	3.84	7337	
	DCM	368	526	3.59	8163	
	THF	369	518	4.15	7795	
M2	EA	367	519	3.74	7980	0.08
	EtOH	364	524	3.17	8389	
	acetonitrile	364	537	3.40	8851	
	DMF	369	541	3.33	8616	
	benzene	369	543	4.72	8684	
	DCM	367	431	4.82	4046	
	THF	369	405	5.27	2489	
M3	EA	364	520	5.07	8242	0.15
	EtOH	363	430	4.47	4292	
	acetonitrile	360	426	4.71	4304	
	DMF	367	436	4.28	4312	
M4	benzene	370	423	3.80	3386	
	DCM	369	425	3.63	3571	
	THF	369	421	4.19	3347	
	EA	366	420	3.76	3513	0.12
	EtOH	363	427	3.22	4184	
	acetonitrile	364	428	3.39	4108	
	DMF	369	428	3.36	3736	

Table S3 The linear optical parameters of compounds M1, M2, M3, and M4 in different solvents.

[a] Peak position of the longest absorption band. [b] Peak position of fluorescence emission, excited at the absorption maximum. [c] Molar absorptivity (L/cm/mol). [d] Stokes' shift in cm⁻¹. [e] Quantum yields in solid state

Fig. S3. UV-vis spectra of compounds (a) M1, (b) M2, (c) M3, and (d) M4 in different solvents (10 μ M).

Fig. S4. UV-vis spectra of (a) M1, (b) M2, (c) M3, and (d) M4 at 10 μ M in THF/H₂O mixtures with different water fractions.

Fig. S5. Quenching percentages of compounds (a) M1, (b) M2, (c) M3, and (d) M4 (10 μ M) with different NACs (15 equiv.) in THF/H₂O (1/ 99, v/v) mixtures before (black) and after (red) the addition of PA (15 equiv.).

Fig. S6. Stern-Volmer plot of (a) M1, (b) M2, (c) M3, and (d) M4 in response to PA.

Fig. S7. Normalized UV-vis absorption spectra of PA and normalized fluorescence of (a) M1, (b) M2, (c) M3, and (d) M4.

Fig. S8. Optimized molecular structures and molecular orbital amplitude plots of the LUMO and HOMO levels, energy gaps and electron cloud distribution of **M1**, **M2**, **M3**, **M4**, and PA calculated using the B3LYP/6-31G* basis set.

Fig. S12. ¹³C NMR spectrum of compound M2 in CDCl₃.

180 160 140 120 100 80 60 40 20 0 -20 f1 (ppm)

