SUPPORTING INFORMATION

1. Materials and methods

All reagents were commercially purchased and used without further purification. Powder X-ray diffraction (PXRD) was carried out on a PANalytical X' pert PRO MPD diffractometer with Mo K α radiation (λ =0.71073Å). Infrared (IR) spectrum using KBr pellets were produced by a Bruker Tensor 37 spectrophotometer. Thermogravimetric analyses (TGA) were carried out using a HCT-2 thermal analyzer with a heating rate of 10°C min⁻¹. The fluorescence spectrum were recorded on an FL7000 fluorescence spectrophotometer (Japan Hitachi company). The UV–vis spectrum were recorded by U-3900H spectrophotometer (Japan Hitachi company). DFT calculations were performed at the B3LYP/6-311G** level of the Gaussian 09 program.

2. Crystallography

The crystal diffraction data for complexes 1-5 were collected on a Bruker Apex II CCD diffractometer with graphite monochromated Mo K α radiation at 293(2) K. The SADABS program was used for absorption corrections. The structures were solved by direct methods and refined by the full matrix least squares method on F² using the SHELXS 97 and SHELXL 97 programs. All hydrogen atoms were generated geometrically and treated by a mixture of independent and constrained refinements.

Fig. S1 The IR spectra of the complexes (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

Fig. S2 The PXRD patterns of the complexes 1-5

Fig. S3 The TGA curves of (a) 1 (b) 2 (c) 3 (d) 4 (e) 5

Fig. S4 The PXRD patterns of 1 at different pH solutions

Fig. S5 The luminescence intensity of recovered sample after sensing experiment

Fig. S6 The PXRD patterns of 1 before and after the experiment

Fig. S7 Film@2 detection of chlorogenic acid with different concentrations

complex 1			
Eu(1)-O(4)	2.415(3)	Eu(1)-O(7)A	2.399(3)
Eu(1)-O(2)B	2.315(3)	Eu(1)-O(5)	2.526(3)
Eu(1)-O(6)	2.435(3)	Eu(1)-O(1)C	2.376(3)
Eu(1)-N(4)	2.587(4)	Eu(1)-N(5)	2.566(3)
O(4)-Eu(1)-O(5)	141.68(11)	O(4)-Eu(1)-O(6)	74.82(10)
O(4)-Eu(1)-N(4)	80.52(11)	O(4)-Eu(1)-N(5)	109.20(10)
O(7)A-Eu(1)-O(5)	137.04(11)	O(7)A-Eu(1)-O(4)	79.09(11)
O(7)A-Eu(1)-N(4)	124.61(10)	O(7)A-Eu(1)-O(6)	67.26(9)
O(2)B-Eu(1)-O(7)A	140.38(10)	O(7)A-Eu(1)-N(5)	75.55(10)
O(2)B-Eu(1)-O(6)	74.88(10)	O(2)B-Eu(1)-O(4)	80.21(10)
O(2)B-Eu(1)-N(4)	84.27(11)	O(2)B-Eu(1)-O(5)	75.27(10)
O(5)-Eu(1)-N(5)	76.87(10)	O(2)B-Eu(1)-O(1)C	106.20(11)
O(6)-Eu(1)-O(5)	124.71(9)	O(2)B-Eu(1)-N(5)	143.63(11)
O(6)-Eu(1)-N(5)	141.20(10)	O(5)-Eu(1)-N(4)	68.23(10)
O(1)C-Eu(1)-O(4)	146.42(11)	O(1)C-Eu(1)-N(4)	132.36(11)
O(1)C-Eu(1)-O(5)	69.98(11)	O(6)-Eu(1)-N(4)	149.93(10)
O(1)C-Eu(1)-O(7)A	75.55(11)	O(1)C-Eu(1)-N(5)	85.40(10)
O(1)C-Eu(1)-O(6)	75.27(10)	N(5)-Eu(1)-N(4)	63.81(11)

Table S1 Selected bond lengths [Å] and angles [°] for complexes 1-5

A:-X,-Y,1-Z; B:-X,1-Y,1-Z; C:1+X,-1+Y,+Z; D:-1+X,1+Y,+Z

	complex 2		
Tb(1)-O(4)	2.286(3)	Tb(1)-O(7)	2.499(3)
Tb(1)-O(6)	2.404(3)	Tb(1)-O(5)A	2.380(3)
Tb(1)-O(2)B	2.379(3)	Tb(1)-O(3)C	2.345(3)

Tb(1)-N(5)	2.535(4)	Tb(1)-N(4)	2.558(4)
O(4)-Tb(1)-O(7)	75.53(11)	O(4)-Tb(1)-O(6)	74.72(12)
O(4)-Tb(1)-O(5)A	140.90(11)	O(4)-Tb(1)-O(2)B	80.94(12)
O(4)-Tb(1)-O(3)C	106.38(12)	O(4)-Tb(1)-N(5)	144.10(12)
O(4)-Tb(1)-N(4)	83.66(13)	O(7)-Tb(1)-N(5)	77.34(11)
O(7)-Tb(1)-N(4)	68.59(12)	O(6)-Tb(1)-O(7)	125.34(11)
O(6)-Tb(1)-N(5)	141.03(12)	O(6)-Tb(1)-N(4)	148.52(12)
O(5)A-Tb(1)-O(7)	136.95(12)	O(5)A-Tb(1)-O(6)	68.02(10)
O(5)A-Tb(1)-N(5)	74.38(12)	O(5)A-Tb(1)-N(4)	123.96(12)
O(2)B-Tb(1)-O(7)	141.19(12)	O(2)B-Tb(1)-O(6)	75.67(12)
O(2)B-Tb(1)-O(5)A	78.86(12)	O(2)B-Tb(1)-N(5)	107.17(12)
O(2)A-Tb(1)-N(4)	78.59(13)	O(3)C-Tb(1)-O(7)	70.08(12)
O(3)C-Tb(1)-O(6)	75.88(12)	O(3)C-Tb(1)-O(5)A	76.00(12)
O(3)C-Tb(1)-O(2)B	147.41(13)	O(3)C-Tb(1)-N(5)	85.68(11)
O(3)C-Tb(1)-N(4)	133.16(12)	N(5)-Tb(1)-N(4)	64.67(12)

A:1-X,-Y,1-Z; B:1-X,1-Y,1-Z; C:-X,-Y,1-Z

complex 3			
Sm(1)-O(3)A	2.431(3)	Sm(1)-O(5)	2.414(3)
Sm(1)-O(1)	2.335(3)	Sm(1)-O(7)	2.540(3)
Sm(1)-O(6)	2.444(2)	Sm(1)-O(2)B	2.392(3)
Sm(1)-N(5)	2.581(3)	Sm(1)-N(4)	2.601(3)
O(3)A-Sm(1)-O(7)	142.20(10)	O(3)A-Sm(1)-O(6)	74.37(9)
O(3)A-Sm(1)-N(5)	110.22(9)	O(3)A-Sm(1)-N(4)	81.41(10)
O(5)-Sm(1)-O(3)A	79.36(10)	O(5)-Sm(1)-O(7)	136.50(9)
O(5)-Sm(1)-O(6)	66.95(8)	O(5)-Sm(1)-N(5)	75.93(9)
O(5)-Sm(1)-N(4)	124.92(9)	O(1)-Sm(1)-O(3)A	79.65(9)
O(1)-Sm(1)-O(5)	140.10(9)	O(1)-Sm(1)-O(7)	75.78(9)
O(1)-Sm(1)-O(6)	74.88(9)	O(1)-Sm(1)-O(2)B	106.27(10)
O(1)-Sm(1)-N(5)	143.59(10)	O(1)-Sm(1)-N(4)	84.56(10)
O(7)-Sm(1)-N(5)	76.27(9)	O(7)-Sm(1)-N(4)	68.14(9)
O(6)-Sm(1)-O(7)	124.65(8)	O(6)-Sm(1)-N(5)	141.19(9)
O(6)-Sm(1)-N(4)	150.52(9)	O(2)B-Sm(1)-O(3)A	146.17(10)
O(2)B-Sm(1)-O(5)	75.35(9)	O(2)B-Sm(1)-O(7)	69.51(10)
O(2)B-Sm(1)-O(6)	75.24(9)	O(2)B-Sm(1)-N(5)	85.05(9)
O(2)B-Sm(1)-N(4)	131.79(9)	N(5)-Sm(1)-N(4)	63.52(10)

A:-X,2-Y,1-Z; B:1-X,1-Y,1-Z; C:-X,1-Y,1-Z

complex 4

Dy(1)-O(1)	2.273(3)	Dy(1)-O(3)A	2.365(3)
Dy(1)-O(5)	2.394(3)	Dy(1)-O(6)B	2.367(3)
Dy(1)-O(7)	2.487(3)	Dy(1)-O(2)C	2.335(3)
Dy(1)-N(2)	2.526(3)	Dy(1)-N(1)	2.544(3)
O(1)-Dy(1)-O(3)A	81.54(9)	O(1)-Dy(1)-O(5)	74.64(9)
O(1)-Dy(1)-O(6)B	141.08(9)	O(1)-Dy(1)-O(7)	75.95(9)
O(1)-Dy(1)-O(2)C	106.24(10)	O(1)-Dy(1)-N(2)	144.06(10)
O(1)-Dy(1)-N(1)	83.52(10)	O(3)A-Dy(1)-O(5)	75.80(9)
O(3)A-Dy(1)-O(6)B	78.55(10)	O(3)A-Dy(1)-O(7)	141.16(10)
O(3)A-Dy(1)-N(2)	106.27(9)	O(3)A-Dy(1)-N(1)	78.12(10)
O(5)-Dy(1)-O(7)	126.16(9)	O(5)-Dy(1)-N(2)	141.20(9)
O(5)-Dy(1)-N(1)	148.01(10)	O(6)B-Dy(1)-O(5)	68.23(9)
O(6)B-Dy(1)-O(7)	136.70(10)	O(6)B-Dy(1)-N(2)	74.20(9)
O(6)B-Dy(1)-N(1)	123.80(9)	O(7)-Dy(1)-N(2)	76.91(9)
O(7)-Dy(1)-N(1)	68.31(9)	O(2)C-Dy(1)-O(3)A	147.53(10)
O(2)C-Dy(1)-O(5)	76.12(9)	O(2)C-Dy(1)-O(6)B	76.15(10)
O(2)C-Dy(1)-O(7)	70.29(10)	O(2)C-Dy(1)-N(2)	86.04(9)
O(2)C-Dy(1)-N(1)	133.42(10)	N(2)-Dy(1)-N(1)	64.70(10)

A:-X,-Y,1-Z; B:-X,1-Y,1-Z; C:1-X,1-Y,1-Z

complex 5			
Ce(1)-O(7)	2.597(3)	Ce(1)-O(5)	2.474(3)
Ce(1)-O(3)A	2.503(3)	Ce(1)-O(1)	2.399(3)
Ce(1)-O(6)	2.504(2)	Ce(1)-O(2)B	2.460(3)
Ce(1)-N(5)	2.657(3)	Ce(1)-N(4)	2.686(3)
O(7)-Ce(1)-N(5)	76.22(9)	O(7)-Ce(1)-N(4)	67.21(9)
O(5)-Ce(1)-O(7)	137.03(10)	O(5)-Ce(1)-O(3)A	79.84(10)
O(5)-Ce(1)-O(6)	65.34(8)	O(5)-Ce(1)-N(5)	77.63(9)
O(5)-Ce(1)-N(4)	125.73(9)	O(3)A-Ce(1)-O(7)	142.31(10)
O(3)A-Ce(1)-O(6)	73.02(9)	O(3)A-Ce(1)-N(5)	113.65(9)
O(3)A-Ce(1)-N(4)	85.31(10)	O(1)-Ce(1)-O(7)	74.63(9)
O(1)-Ce(1)-O(5)	139.23(9)	O(1)-Ce(1)-O(3)A	78.47(9)
O(1)-Ce(1)-O(6)	75.45(9)	O(1)-Ce(1)-O(2)B	106.19(10)
O(1)-Ce(1)-N(5)	142.99(10)	O(1)-Ce(1)-N(4)	86.28(10)
O(6)-Ce(1)-O(7)	123.43(8)	O(6)-Ce(1)-N(5)	140.85(9)
O(6)-Ce(1)-N(4)	153.90(9)	O(2)B-Ce(1)-O(7)	69.68(10)
O(2)B-Ce(1)-O(5)	74.28(10)	O(2)B-Ce(1)-O(3)A	144.51(10)
O(2)B-Ce(1)-N(4)	129.66(9)	N(5)-Ce(1)-N(4)	61.47(10)
O(2)B-Ce(1)-O(6)	74.29(9)	O(2)B-Ce(1)-N(5)	84.19(9)

A:1-X,-Y,1-Z; B:-X,1-Y,1-Z; C:1-X,1-Y,1-Z