Accurate experimental characterization of the labile N–Cl bond in N-chloro-N'-(*p*fluorophenyl)-benzamidine crystal at 17.5 K

Riccardo Destro,¹ Mario Barzaghi,² Raffaella Soave,³ Pietro Roversi^{4,5} and Leonardo Lo Presti^{1,6,*}

Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano (Italy)
 Consiglio Nazionale delle Ricerche (CNR), Piazzale Aldo Moro 7, 00185 Roma (Italy)

3 Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze E Tecnologie Chimiche "Giulio Natta" (SCITEC), Via Golgi 19, 20133 Milano (Italy)

4 Consiglio Nazionale delle Ricerche - IBBA, Via Bassini 15, 20133 Milano (Italy)

5 Leicester Institute of Chemical and Structural Biology and Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7HR, United Kingdom

6 Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Frascati (Italy)

* To whom correspondence should be addressed: leonardo.lopresti@unimi.it

SUPPLEMENTARY MATERIAL

S1. Details of the data collection

S1.1 First sample

Unaware of the relatively high vapor pressure of this compound, we glued a sample (ground to an approximate sphere 0.5 mm in diameter) on the tip of a glass fiber at the center of the vacuum shroud ($P \approx 10^{-8}$ mbar) without enclosing the crystal into a protective medium, and the temperature was gradually lowered. In the few hours necessary to reach the lowest temperature the crystal diameter decreased to 0.45 mm, then the volume remained unchanged for the following ~340 hours of exposure to X-rays at constant low pressure and low T. But visual inspection and profile analysis showed that a crystal fracture had occurred during data collection, and the 12158 intensities measured from this sample were discarded.

S1.2 Second sample

The first stop, that lasted 86 days, occurred after 336.7 hours of exposure of the crystal to X-rays, with the generator operating at high power (50kV and 25mA) for 299.7 h, and at low power (30kV and 3mA) for the following 37 h. The lower current radiation was employed to re-measure low-angle data, to minimize possible problems associated with nonlinearity of the photon counting system. When the crystal was removed from the cryostat and brought back to room temperature, its enclosure into the capillary showed very effective, since no reduction of volume nor fractures were noticeable, but it was no longer transparent and appeared pale yellow. This first portion of the data set comprised 13526 diffracted intensities.

Before restarting the regular data collection the crystal was exposed to the high-power X-rays for 72.3 hours, to perform background and profile measurements necessary for the subsequent treatment of truncation errors, according to the procedure regularly applied in our laboratory for accurate charge-density studies.^{1–6} A second stop, lasting four days, was required by a sudden failure of the vacuum system just after the resumption of intensity measurements, with only 603 new data collected. At the opening of the cryostat the crystal color showed to be slightly darker then at the beginning of this data-collection step. After replacement of some cryostat components, a low temperature around 17 K was reached and maintained until the end of the data collection, more than 300 hours later, when the crystal color had become brown.

S2. List of Cambridge Structural Database reference codes employed to study the N–Cl bond

AZCFOM01 ENAJIO FEVNUP GUGREH NUJJAF NUXXOV PASJAV RAQBIX SEMHOI TIYDAI TIYDAI TIYDOW TIYDOW01 TIYFAK TUWDIY XOLYAA

S3. Input stream for periodic quantum simulations (CRYSTAL)

N- CR 0 14	CL YS1 0 (4	2([A])	C L	K	e	хp)	ge	01	n	P	3	(1)											
10	.02	22	7	9.	. 8	79	15	1	2	0.	0															
21977666666666666611111111111ASOAMA	- - - - - - - - - - - - - - - - - - -		.0.1 .2.2 .0.1 .1.2 .2.3 .4.4 .0.0 .1.1 .2.1 .0.2 .1.1 .0.2 .1.1 .2.2 .0.0 .1.2 .1.1 .2.2 .1.1 .2.2 .1.1 .1.2 .2.2 .1.2 .1.2 .1.2 .2.2 .1.1.2 .1.2	89 60 95 57 22 31 57 22 31 55 60 55 50 60 55 50 60 55 50 60 55 30 55 22 8 51 20 8 51 20 55 30 55 22 8 50 72 20 8 55 30 55 20 8 55 30 55 20 8 50 50 50 50 50 50 50 50 50 50 50 50 50	00000000000000000000000000000000000000	13753701862259267900000000000000000000000000000000000				111 7799 900 117 100 110 100 110 100 100 100 100 1	848041394418420795480480145	413996145822304671334316919	072794969541119439001026048	664819874624829760000000000					0110123443211111135521111110	041733553110123217509203311	005868852243072745394121304	035851458149701468523786581	039681155162065534027545880	01594413686417550000000000000		
10 10	0		ĽĽ																							
EN EN	IDGE	PT EOI	M																							
17	10)	~	~	_																					
0	0 695	/ <u>2</u> 501	2. 7.	90	1 06	. U 94	5					0		0	0	0.	5.	4	3	1	4	8	9	74	19	17
	104	120	6.	15	56	88	0					0		0	0	4	1	9	9	0	4	6	3	96	51	0
	237	73	.2	33	34	06	1					0	•	0	2	1.	5	9	2	1	4	1	6	79	90	0
	218	L 3.4	50 41	99	20 99	79	100					0	:	2	0 4	4. 7.	5'	9 7	2	0 4	5 9	7	2	94 4(10 00	0
	77.	. 5	72	24	19	71	4					0	•	4	7	0	1	6	9	3	0	2	2	80	0 0	0
~	28	. 88	38	81	.5	27	7					0	•	3	7	4	3	6	3	7	0	7	1	60	0 0	0
0	12	5. 7.*	∠. 10	0 52	⊥ 7 <	18	15					0		0	2	5	1:	8	2	1	6	6	6	0 ?	3.0	0
	39.	. 3:	39	58	32	96	1					0	•	1	0	7	8	6	1	1	2	4	5	60	0 0	0
~	7.6	574	40	67	79	98	9				-	0	·	2	7	4	0	8	8	2	1	5	7	4(0 (0
0	3.8	2 . 37.	∠. 45	0	⊥ 7 <	.0	0					1		3	2	1	3	8	7	5	0	1	4	00	0	0
	1.8	338	35	83	32	57	3					0		6	8	6	3	6	9	5	5	3	6	80	0	0
0	0 1	L ().	0	1	.0								_	~	_	_	~	_	_	_	_	_	~ ~		~
0	0.4	14:	98 1	59	94 1	50						Ţ	•	0	0	0	01	0	0	0	0	0	0	00	00	0
0	0.1	130	63	70)3	10	0					1		0	0	0	0	0	0	0	0	0	0	00	00	0
0	2 5	5 (6.	0	1	.0						~		~	~	<u> </u>	2	~	2	~	~	~	2	<u> </u>		
	157	5.: 7.(50 64	42	23 11	20	94 90					0	•	0	1	2. 81	3 ' 8 '	ю 7	э 9	2 3	ю 0	ю 0	з З	8: 74	10	0
	50.	.2	62	52	20	97	8					0		0	8	7:	21	0	6	3	4	1	2	73	30	0
	18.	. 53	36	07	78	10	15					0	·	2	5	2	8:	5	6	1	2	9	7	00	00	0
0	2.1	294 	ΞU 5.	53 0	52 1	11	/					υ	•	4	3	2	υ.	/	T	Э	4	8	2	υ(10	U
-	2.8	30	14	91	6	40	0	0				1	•	0	0	0	0	0	0	0	0	0	0	00	00	0
0	2 1	L ().	0	1	.0		0				1		<u>م</u>	<u>_</u>	<u> </u>	<u> </u>	0	0	~	<u>م</u>	~	<u>_</u>	<u> </u>	<u>م</u>	0
0	0.1	10	ษю า	42	: / 1	00	i U I	U				T	•	U	U	U	U	U	U	U	U	U	U	υι	U U	U
~	2	Lι	J -	0	- et	• •																				
	0.2	21().)5	61	0	50	0	0				1	•	0	0	0	0	0	0	0	0	0	0	00	00	0

9	8	
0	0 6 2 0 1 0	
	35479.100441	0.00021545014888
	5318.4728983	0.00167006865270
	1210.4810975	0.00867332114760
	342.85518140	0.03504993317500
	112.01943181	0.11165320133000
	40.714740248	0.25988506647000
0	0 2 2.0 1.0	0 004000000000
	16.0396/8111	0.39422966880000
0	0.10010	0.24998238551000
0	1 4420074900	1 00000000000000
0	0 1 0 0 1 0	1.0000000000000000000000000000000000000
Ŭ	0.4597725800	1.000000000000000
0	2 4 5.0 1.0	
	80.233900483	0.00636859991340
	18.594010743	0.04430314353000
	5.6867902653	0.16867248708000
	1.9511006294	0.36166346255000
0	2 1 0.0 1.0	
	0.6922845200	1.000000000000000
0	2 1 0.0 1.0	
0	0.1983553200	1.00000000000000000
0	3 I U.U I.U 1 0621262500	1 00000000000000
7	0	1.0000000000000000000000000000000000000
0	0 6 2 0 1 0	
0	19730 800647	0 00021887984991
	2957.8958745	0.00169607088030
	673.22133595	0.00879546035380
	190.68249494	0.03535938260500
	62.295441898	0.11095789217000
	22.654161182	0.24982972552000
0	0 2 2.0 1.0	
	8.9791477428	0.4062389614800
	3.6863002370	0.2433821717600
0	0 1 0.0 1.0	
~	0.7865398200	1.00000000000000
0	0 1 0.0 1.0	1 0000000000000
0	0.26//99/200	1.000000000000000
0	2 4 3.0 1.0 49 200380510	0 0055552416751
	11 346790537	0.0000000000000000000000000000000000000
	3.4273972411	0.1495367102900
	1.1785525134	0.3494930523000
0	2 1 0.0 1.0	
	0.3780331700	1.0000000000000
0	2 1 0.0 1.0	
	0.1473661500	1.0000000000000
0	3 1 0.0 1.0	
~	0.3612294900	1.00000000000000
6	8	
U	U 6 Z.U I.U	0 00000045014050
	2035 2333690	0.00022245814552
	2033.2333000	0.00172327362320
	131 20019598	0.03572798450200
	42.853015891	0.11076259931000
	15.584185766	0.24295627626000
0	0 2 2.0 1.0	
	6.2067138508	0.41440263448000
	2.5764896527	0.23744968655000
0	0 1 0.0 1.0	
	0.4941102000	1.0000000000000000
0	0 1 0.0 1.0	1
0	0.16440/1000	T.000000000000000000000000000000000000
U	2 4 2.U 1.U 34 697232244	0 00533336579050
	7.9582622826	0.03586410909200
	2.3780826883	0.14215873329000
	0.8143320818	0.34270471845000
0	2 1 0.0 1.0	
	0.5662417100	1.000000000000000
0	2 1 0.0 1.0	

	0.1973545000	1.000000000000
0	3 1 0.0 1.0	
	0.5791584200	1.0000000000000
1	4	
0	0 3 1.0 1.0	
	34.061341000	0.00602519780
	5.1235746000	0.04502109400
	1.1646626000	0.20189726000
0	0 1 0.0 1.0	
	0.5157455100	1.0000000000
0	0 1 0.0 1.0	
	0.1795111000	1.0000000000
0	2 1 0.0 1.0	
	0.500000000	1.0000000000
99	9 0	
Εŀ	IDBASIS	
DE	ΥT.	
PE	3E0	
Εŀ	IDDFT	

SHRINK 4 4 GRIMME 1.05 20. 25. 5 1 0.14 1.001 6 1.75 1.452 7 1.23 1.397 9 0.75 1.287 17 5.07 1.639 LEVSHIFT 5 0 FMIXING 30 TOLINTEG 8 8 8 8 16 PPAN ENDSCF STOP

S4. Estimation of the absorbed dose

The operational parameters of the current data collections are $\lambda = 0.71073$ Å at a nominal 50 kV x 25 mA (1250 W) power of the generator. If this was fully converted into radiation, as each photon carries 17.44 keV = $2.79 \cdot 10^{-15}$ J of energy, we expect un upper limit theoretical flux of $4.48 \cdot 10^{17}$ photons per second. We do not know the quantum efficiency of our fine-focus X-ray sealed tube, but we expect it is of the order of 1 %, of which only ~6.6 % will belong to the characteristic K α fuorescence line. Another factor of ~0.007 comes from ratio between the area of the Be window and the whole solid angle. Considering a further reduction of ~ 1/100 due to monochromator, collimator and air, a cautious total factor of $3.57 \cdot 10^{-9}$ could be employed to account for all the energy losses. This leaves out a flux of $1.60 \cdot 10^9$ photons/s, corresponding to a total of $4.32 \cdot 10^{15}$ photons possibly able to interact with the sample over the whole period of 750 hrs of exposure to X-rays. As the μR factor reads 0.081 (Table 1 in the main text), the amount of absorbed radiation is $1-e^{-0.081}$ and the total amount of energy transferred to the crystal should be of the order of 0.9 J.

As the specimen is a sphere with a diameter of 0.5 mm, the total volume is $6.54 \cdot 10^{-5}$ cm³, corresponding to a mass of $9.43 \cdot 10^{-8}$ kg owing the X-ray estimated density of 1.441 g·cm⁻³. Finally, the amount of absorbed dose in Grays (Gy) is 0.9 J / $9.43 \cdot 10^{-8}$ kg = 9.5 MGy. For X-rays, we expect that the amount of effective dose, that is, the dose able to cause damage, be equal to the absorbed one.

S5. Crystal packing

Figure S1. Wires-stick model of NCLBA crystal packing along the *a* axis. Molecules wrap along *c* around the 3_1 screw, setting up a helix motif where chlorine atoms (green spheres) are allocated in the free space between neighboring molecules.

Figure S2. Ball-and-stick representations of molecular pairs shown in Table 2, from the most to the least negative interaction energy (see main text and Table 2 for numbering). H \cdots Acceptor contacts are highlighted as red dashed lines.

S6. Results of multipole refinements

Table S1. Results of the multipolar refinement of NCLBA with VALRAY2000. l_{max} is the maximum order of the multipole expansion; C_{ijk} and D_{ijkl} signal that the Gram-Charlier third and fourth order cumulants are also active in the least-squares (l.s.) refinement.

		ust squares (1.5.)			
Model	А	В	С	D	E ^(a)
	C,N,F,Cl: $l_{max}=3$	C,N,F,Cl: $l_{max}=4$	Model B +	Model C +	Model B+ C _{ijk} +
	H: $l_{\text{max}}=2$	H: $l_{\text{max}}=2$	C _{ijk} (Cl)	D _{ijkl} (Cl)	D _{ijkl} (Cl,F)
Scale factor	1.0065(9)	1.004(1)	1.004(1)	1.003(1)	1.000(2)
Extin. coeff. g ₁₁	0.177(7)	0.163(7)	0.164 (7)	0.159(7)	0.161(8)
N. variables (N _v)	517	670	680	695	680
N _{obs} / N _v	27.7	21.4	21.0	20.6	21.0
		On all 14309 ol	oserved (I>0) data		
$\sum w\Delta^2$	14060.8796	13375.6562	13312.0334	13115.7719	12695.6271
G.o.f.	1.0097	0.9903	0.9883	0.9815	0.9652
$R(F), R(F^2)$	0.0165, 0.0195	0.0162, 0.0189	0.0162, 0.0188	0.0161, 0.0187	0.0159, 0.0177
Rw(F ²)	0.0289	0.0281	0.0281	0.0279	0.0274
	On 40	D2 data with (sin θ)	$\lambda \leq 0.35$ (low-ang	le data)	
R(F), R(F ²)	0.0055, 0.0115	0.0052, 0.0110	0.0052, 0.0110	0.0051, 0.0107	0.0041, 0.0085
R _w (F ²)	0.0136	0.0128	0.0128	0.0127	0.0101
	On 2625 da	ata with $(\sin\theta/\lambda) \leq$	0.35 (i.e. within th	e Cu sphere)	
R(F), R(F ²)	0.0079, 0.0135	0.0075, 0.0129	0.0075, 0.0128	0.0074, 0.0126	0.0069, 0.0111
R _w (F ²)	0.0183	0.0171	0.0171	0.0169	0.0159
	On 11684	data with $0.65 \le (s$	$\sin\theta/\lambda$) ≤ 1.15 (high	-angle data)	
$R(F), R(F^2)$	0.0209, 0.0271	0.0207, 0.0264	0.0207, 0.0264	0.0206, 0.0262	0.0205, 0.0259
Rw(F ²)	0.0343	0.0337	0.0336	0.0334	0.0331
		On 13437 da	ta with I > 3σ(I)		
Scale factor	1.007(1)	1.005(1)	1.005(1)	1.003(1)	1.000(2)
Extin. coeff. g11	0.178(7)	0.164(7)	0.165(7)	0.159(7)	0.161(9)
$\sum w\Delta^2$	13458.2806	12774.7585	12714.6099	12515.3106	12102.4548
G.o.f.	1.0206	1.0003	0.9983	0.9911	0.9740
$R(F), R(F^2)$	0.0144, 0.0191	0.0141, 0.0185	0.0141, 0.0184	0.0140, 0.0182	0.0137, 0.0173
R _w (F ²)	0.0282	0.0275	0.0274	0.0272	0.0268
Nobs/ Nv	26.0	20.1	19.8	19.3	20.1
$\Delta \varrho$ min (e Å ⁻³)	-0.3373	-0.2763	-0.2727	-0.2698	-0.2478
At X,Y,Z	0.127, 0.162,	-0.100, -0.400,	-0.100, -0.400,	-0.100, -0.400,	0.151, 0.262,
	-0.016	0.126	0.126	0.126	0.016
Δǫ max (e Å-3)	0.5095	0.3329	0.2835	0.3031	0.2575
At X,Y,Z	0.127, 0.162,	0.123, 0.155,	-0.219, 0.162,	-0.223, 0.155,	-0.223, 0.154,
	0.028	0.030	0.097	0.094	0.093

(a) Includes 10 radial parameters to be refined; C_{ijk} and D_{ijkl} of halogen atoms kept at the values obtained after their previous l.s. refinement.

Table S2. Final geometric and multipole parameters retrieved from model "E" (Table S1).

Box 1: atom specie, atom number, crystallographic coordinates / six U_{ij} tensor elements in the following order: U_{11} , U_{22} , U_{33} , U_{12} , U_{13} , U_{23} (note that the order of the off-diagonal elements is reversed with respect to the standard shelx notation)

SCALE	1.	0004	443	1	4				
ATOM	CL	01	0.	089013	0.118406	0.000000			0
UIJ	CL	01	0.	006344	0.005217	0.007368	0.003193	-0.000429	0.000692
ATOM	F	01	-0.	160927	-0.794176	0.140331			0
UIJ	F	01	Ο.	013114	0.004179	0.016161	0.004909	0.002581	0.002873
ATOM	Ν	01	0.	209995	0.098324	0.115595			0
UIJ	Ν	01	0.	006229	0.004153	0.007640	0.002176	-0.001386	0.000021
ATOM	Ν	02	0.	053783	-0.170978	0.078869			0
UIJ	Ν	02	Ο.	006778	0.003780	0.009682	0.002141	-0.003751	-0.000549
ATOM	С	01	0.	172367	-0.044991	0.136584			0
UIJ	С	01	0.	004639	0.004051	0.005792	0.001979	-0.000816	-0.000191
ATOM	С	02	0.	272930	-0.061649	0.238114			0
UIJ	С	02	Ο.	004554	0.005236	0.005210	0.002164	-0.000473	0.000191
ATOM	С	03	0.	210421	-0.143198	0.358411			0
UIJ	С	03	0.	005177	0.007102	0.005741	0.002137	0.000101	0.000858
ATOM	С	04	0.	308218	-0.149467	0.455553			0
UIJ	С	04	0.	007300	0.007983	0.005962	0.003113	-0.000276	0.001384
ATOM	С	05	0.	467106	-0.074594	0.432856			0
UIJ	С	05	0.	006969	0.008615	0.006982	0.004164	-0.001172	0.000612
ATOM	С	06	0.	528832	0.004856	0.312118			0
UIJ	С	06	0.	005220	0.008653	0.007429	0.003484	-0.000327	0.000603
A'I'OM	C	07	0.	431602	0.011242	0.214466	0 000614	0 000107	0 001007
UIJ	C	07	0.	004848	0.00/38/	0.006205	0.002614	0.00013/	0.00108/
A'I'OM	C	08	0.	005815	-0.328214	0.103924	0 000000	0 001165	0
UIJ A TOM	C	08	0.	100410	0.004116	0.00/289	0.002392	-0.001165	-0.000194
ATOM UT T	C	09	0.	108419	-0.384318	0.110701	0 002007	0 000210	0 000251
ATTOM	C	09	0.	005951	-0 542012	0.008783	0.003097	-0.000219	-0.000231
HIT.T	c	010	0.	001902	0.005991	0.12/00/	0 004223	0 000599	0 000486
ATOM	c	011	_0.	106276	-0 610199	0.132155	0.004225	0.000555	0.000400
IIT.T	c	011	0.	007755	0.040400	0.132133	0 003429	0 001266	0 001143
ATOM	c	012	-0	210227	-0 587647	0.127455	0.003425	0.001200	0.001145
UTJ	C	012	0.	006353	0.004961	0.012674	0.002501	0.000552	0.001084
ATOM	C	013	-0.	152639	-0.429736	0.114630	0.002001	0.000002	0
UTJ	Ĉ	013	0.	005666	0.004916	0.011492	0.002688	-0.000771	0.000469
ATOM	нн	03	0.	087910	-0.195190	0.375840			0
UIJ	НH	03	0.	011540	0.027490	0.022670	0.006550	0.002500	0.004690
ATOM	ΗН	04	Ο.	261490	-0.204300	0.553500			0
UIJ	ΗH	04	0.	023070	0.029780	0.014970	0.009980	0.002850	0.008300
ATOM	ΗH	05	0.	542960	-0.078300	0.509220			0
UIJ	ΗH	05	0.	020430	0.030330	0.020050	0.013800	-0.006250	0.002960
ATOM	ΗH	06	0.	651200	0.060410	0.294370			0
UIJ	ΗH	06	0.	011330	0.030610	0.025610	0.008530	0.001330	0.004030
ATOM	ΗH	07	0.	479520	0.074300	0.121750			0
UIJ	ΗH	07	0.	018700	0.026630	0.016900	0.008700	0.003960	0.008680
ATOM	ΗН	09	0.	230980	-0.308120	0.102840			0
UIJ	ΗН	09	0.	011610	0.017010	0.036170	0.005120	0.000580	0.000760
ATOM	ΗН	010	0.	126800	-0.590660	0.131650			0
UIJ	ΗН	010	0.	020090	0.019790	0.037350	0.014760	0.001330	0.001220
ATOM	HH	012	-0.	333690	-0.661900	0.133580			0
ULJ	HH	012	0.	012340	0.016450	0.043930	0.004150	0.002730	0.003100
A'I'OM	HH	UI3	-0.	228850	-0.384140	0.110880	0 011000	0 001010	0 001040
ULU	нн	UI3	υ.	016400	U.U18380	0.0399/0	0.011890	-0.001810	0.001040
ATOM MUT T	нн	UZN	-0.	017070	-0.135980	0.014100	0 000050	0 007600	0 000000
UTU	пп	U∠N	υ.	01/9/0	0.014/20	0.0210/0	0.008230	-0.00/080	0.000600

Box 2: for each atom, multipole coefficients in the following order: inner/intermediate/outer core spherical population, 3 dipoles, 5 quadrupoles, 7 octupoles (non-H only), 9 hexadecapoles (non-H only). Coefficients are organized as follows, " Y_{lm} " being the corresponding spherical harmonic function (see Table 1 of the Valray users' manual). Dipoles: Y_{11+} , Y_{11-} , Y_{10} . Quadrupoles: Y_{22+} , Y_{22-} , Y_{21+} , Y_{21-} , Y_{20} . Octupoles: Y_{33+} , Y_{33-} , Y_{32+} , Y_{31-} , Y_{31-} , Y_{30} . Hexadecapoles: Y_{44+} , Y_{44-} , Y_{43+} , Y_{43-} , Y_{42+} , Y_{42-} , Y_{41+} , Y_{41-} , Y_{40} .

POPVAL	CL	1	0	1	1.966	2	7.928	3	7.371	4	-0.093	5	0.010	6	-0.083
POPVAL	CL	1	1	7	-0.173	8	0.059	9	-0.550	10	0.052	11	-0.210	12	-0.032
POPVAL	CL	1	2	13	-0.501	14	0.767	15	-0.157	16	0.215	17	-0.037	18	-0.162
POPVAL	CL	1	3	19	0.520	20	-0.943	21	-2.512	22	-2.397	23	0.547	24	-0.216
POPVAL	CL	1	4	25	0.087	26	-0.046	27	-0.209						
POPVAL	F	1	0	1	1.966	2	0.000	3	7.049	4	-0.043	5	0.052	6	0.050
POPVAL	F	1	1	7	0.023	8	-0.078	9	0.157	10	-0.003	11	0.001	12	-0.002
POPVAL	F	1	2	13	-0.047	14	0.009	15	-0.005	16	0.008	17	-0.020	18	0.007
POPVAL	F	1	3	19	0.012	20	0.038	21	-0.122	22	-0.045	23	0.013	24	0.023
POPVAL	F	1	4	25	-0.004	26	-0.015	27	-0.005						
POPVAL	Ν	1	0	1	1.966	2	0.000	3	5.056	4	0.184	5	0.270	6	0.207
POPVAL	Ν	1	1	7	-0.192	8	0.063	9	-0.290	10	0.005	11	-0.222	12	-0.163
POPVAL	Ν	1	2	13	0.057	14	-0.604	15	1.021	16	-0.091	17	0.083	18	0.039
POPVAL	Ν	1	3	19	0.099	20	0.824	21	-0.803	22	-0.293	23	-0.037	24	0.120
POPVAL	Ν	1	4	25	-0.014	26	-0.045	27	-0.020						
POPVAL	Ν	2	0	1	1.966	2	0.000	3	5.095	4	-0.062	5	-0.010	6	0.055
POPVAL	Ν	2	1	7	0.073	8	0.027	9	-0.072	10	0.027	11	0.053	12	-0.357
POPVAL	Ν	2	2	13	0.209	14	-1.105	15	0.988	16	-0.142	17	0.139	18	-0.056
POPVAL	Ν	2	3	19	0.076	20	-0.223	21	-0.737	22	-0.593	23	0.053	24	0.239
POPVAL	Ν	2	4	25	-0.162	26	0.037	27	-0.024						
POPVAL	С	1	0	1	1.966	2	0.000	3	4.117	4	-0.057	5	0.083	6	0.096
POPVAL	C	1	1	7	-0.405	8	-0.577	9	1.631	10	-0.043	11	-0.608	12	1.642
POPVAL	С	1	2	13	-0.846	14	6.050	15	-4.318	16	0.885	17	-0.526	18	0.517
POPVAL	Ĉ	1	3	19	0.310	2.0	2.332	21	-5.847	2.2	0.590	23	-0.081	2.4	0.328
POPVAL	Ĉ	1	4	25	-0.385	2.6	0.781	27	-0.523						
POPVAL	Ĉ	2	0	1	1.966	2	0.000	3	4,201	4	0.159	5	-0.139	6	0.124
POPVAL	Ĉ	2	1	7	0.324	8	0.812	9	-0.031	10	-1.055	11	0.300	12	-0.055
POPVAL	Ĉ	2	2	13	0.585	14	-2.937	15	0.450	16	-1.240	17	-0.699	18	0.270
POPVAL.	c	2	3	19	-1 761	20	4 065	21	0 905	22	-3 653	23	-0 374	24	-0 143
POPVAL.	c	2	4	25	0 644	26	-1 098	27	-0 513	22	5.000	20	0.0/1	21	0.110
POPVAL.	c	3	0	1	1 966	2	0 000	27	4 025	4	0 144	5	-0 050	6	0 061
POPVAL.	c	3	1	7	0 615	8	0.000	g	0 730	10	-1 084	11	0.000	12	0.001
POPVAL.	c	3	2	13	-1 737	14	4 010	15	0.750	16	1 1 4 4	17	0.743	18	-0 681
	c	3	2	10	-0 427	20	1 223	21	1 7/3	22	-0 334	23	0.821	24	-0.887
POPVAL.	c	3	4	25	0.427	26	0 861	21	0 171	22	0.554	20	0.021	27	0.007
DODVAL	c	1	0	2.5	1 966	20	0.001	27	3 999	Л	0 098	5	-0 047	6	0 074
POPVAL.	c	Δ	1	7	0 494	8	0.000	g	0 533	10	-1 228	11	-0 021	12	0.116
POPVAL.	c	Δ	2	13	0 704	14	-2 970	15	0.555	16	-1 086	17	-1 078	18	0.110
POPVAL.	c	Δ	2	19	-1 153	20	-1 133	21	-0 805	22	0 500	23	-1 301	24	-0 631
POPVAL.	c	Δ	4	25	0 799	26	-0 119	27	-0 741	22	0.000	20	1.001	21	0.001
DODVAL	c	5	0	2.5	1 966	20	0.110	27	1 075	Л	0 0/1	5	-0 100	6	-0 053
DODVAL	c	5	1	7	0 106	2	1 073	a	0 506	10	-1 137	11	0.100	12	0.000
DODVAL	c	5	2	13	-1 116	11	1 225	15	-0 022	16	1 318	17	0.233	18	-0.813
DODVAL	c	5	2	10	_1 531	20	5 100	21	-2 107	22	2 561	23	0.751	24	-0.892
DODUAL	c	5	1	25	-1.551	20	-0 364	21	-2.107	22	2.301	20	0.000	24	-0.092
DODUAL	c	6	4	2J 1	1 066	20	0.004	27	1 061	л	0 103	5	0 055	6	0 062
POPVAL	C	G	1	1	1.900	2	0.000	2	4.001	10	1 1 2 1	11	0.000	10	0.002
DODUAL	c	6	2	13	1 31/	11	_2 922	15	_1 115	16	-1 206	17	-0 603	10	-0.202
DODUAL	c	6	2	10	-0 636	20	2 7 4 2	21	-1.113	22	-2 706	23	-0.093	24	0.401
DODUAL	c	6	1	25	1 111	20	_0 7/1	21	_1 /3/	22	2.150	20	0./11	27	0.434
DODUAL	c	7	4	2J 1	1 966	20	-0.741	27	1 066	л	0 011	5	-0 263	6	0 1 / 9
DODUAL	c	7	1	- 7	0 /10	0	0.000	0	4.000	10	1 000	11	-0.203	10	0.140
POPVAL	C	7	1	1 2	1 010	14	0.00/	15	1 042	10	-1.009	17	1 020	10	-0.004
POPVAL	C	7	2	10	-1.010	14	3.31U	10	-1.042	10	2 041	1/	1.030	10	-0.647
POPVAL	C	7	3	73	-0.193	20	1 240	21	1 240	22	-3.941	23	-0.090	24	1.000
POPVAL	C	/	4	20	-1.120	20	-1.340	27	-1.349	4	0 000	F	0 202	c	0 105
POPVAL	C	0	1	1	1.900	2	0.000	2	4.039	10	-0.098	J 11	-0.393	10	0.105
POPVAL	C	8	T	1	0.395	8	0.219	15	0.118	10	-0.251	11	-1.301	12	0.985
POPVAL	C	ð o	2	10	-2.625	14	0.832	15 21	1.689	Τρ	0.320	1/	-0.1/9	TΩ	0.028
POPVAL	C	ð C	ک م	т.а	0.931	20	1.833	21	-3.839	22	0.864	23	0.008	∠4	-0.210
LOLAA	C	8 0	4	25	0.533	26	-0.994	27	0.274	,	0 1 - 0	_	0 1 6 9	~	0 000
LOLAA	C	9	0	1	1.966	2	0.000	3	4.012	4	-0.158	5	-0.163	6	0.096
POPVAL	С	9	1	1	-0.045	8	-0.086	9	-0.082	T ()	-0.480	11	-1.298	12	-1.301
POPVAL	С	9	2	13	2.274	14	-0.654	15	1.239	16	-0.021	17	-0.158	18	-0.069
POPVAL	С	9	3	19	-0.007	20	2.711	21	-2.338	22	-0.676	23	-0.402	24	0.673
POPVAL	С	9	4	25	-1.113	26	0.586	27	0.468						
POPVAL	С	10	0	1	1.966	2	0.000	3	4.026	4	-0.193	5	-0.042	6	0.015
POPVAL	С	10	1	7	0.104	8	0.148	9	-0.079	10	-0.328	11	-1.544	12	0.761

Table S2, box 2 continued

POPVAL	С	10	2	13	-2.765	14	0.041	15	1.989	16	-0.240	17	0.427	18	0.069
POPVAL	С	10	3	19	-0.185	20	1.310	21	-4.909	22	-3.914	23	-0.227	24	0.684
POPVAL	С	10	4	25	-0.493	26	0.025	27	1.672						
POPVAL	С	11	0	1	1.966	2	0.000	3	4.110	4	-0.086	5	0.322	6	-0.008
POPVAL	С	11	1	7	0.769	8	0.264	9	0.004	10	0.097	11	-1.194	12	-1.475
POPVAL	С	11	2	13	2.626	14	-0.232	15	-0.793	16	0.325	17	0.609	18	-0.271
POPVAL	С	11	3	19	1.532	20	6.286	21	-3.035	22	-1.629	23	0.456	24	1.285
POPVAL	С	11	4	25	-0.110	26	-1.064	27	0.472						
POPVAL	С	12	0	1	1.966	2	0.000	3	4.002	4	-0.015	5	0.047	6	-0.081
POPVAL	С	12	1	7	-0.076	8	0.127	9	0.032	10	-0.136	11	-1.114	12	1.138
POPVAL	С	12	2	13	-2.525	14	0.827	15	1.533	16	0.268	17	0.334	18	-0.075
POPVAL	С	12	3	19	-0.142	20	-2.342	21	-2.430	22	-2.381	23	0.325	24	-1.339
POPVAL	С	12	4	25	0.960	26	2.146	27	-0.796						
POPVAL	С	13	0	1	1.966	2	0.000	3	4.082	4	0.000	5	-0.263	6	0.089
POPVAL	С	13	1	7	-0.049	8	-0.002	9	-0.026	10	-0.495	11	-1.354	12	-1.169
POPVAL	С	13	2	13	2.295	14	-1.062	15	0.676	16	0.237	17	0.048	18	-0.182
POPVAL	С	13	3	19	-0.119	20	3.339	21	-1.076	22	-3.635	23	-0.723	24	0.308
POPVAL	С	13	4	25	-0.955	26	-0.412	27	0.516						
POPVAL	ΗH	3	0	1	0.000	2	0.000	3	0.919	4	0.521	5	0.123	6	-0.141
POPVAL	ΗH	3	1	7	0.616	8	0.804	9	-0.387	10	-0.316	11	-0.610	12	0.000
POPVAL	ΗH	3	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	ΗH	3	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	ΗH	3	4	25	0.000	26	0.000	27	0.000						
POPVAL	ΗH	4	0	1	0.000	2	0.000	3	0.909	4	0.259	5	-0.053	6	-0.804
POPVAL	ΗH	4	1	7	-0.030	8	0.974	9	-0.045	10	-0.361	11	0.909	12	0.000
POPVAL	ΗH	4	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	ΗH	4	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	ΗH	4	4	25	0.000	26	0.000	27	0.000						
POPVAL	ΗH	5	0	1	0.000	2	0.000	3	0.952	4	-0.482	5	0.006	6	-0.306
POPVAL	ΗH	5	1	7	0.314	8	-0.989	9	1.257	10	-0.884	11	-0.486	12	0.000
POPVAL	ΗH	5	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	ΗH	5	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	ΗH	5	4	25	0.000	26	0.000	27	0.000						
POPVAL	ΗH	6	0	1	0.000	2	0.000	3	0.944	4	-0.402	5	-0.216	6	0.248
POPVAL	ΗH	6	1	7	-0.043	8	0.200	9	-0.078	10	-0.033	11	-0.457	12	0.000
POPVAL	ΗH	6	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	ΗH	6	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	ΗH	6	4	25	0.000	26	0.000	27	0.000						
POPVAL	ΗH	7	0	1	0.000	2	0.000	3	0.968	4	-0.251	5	-0.543	6	0.501
POPVAL	ΗH	7	1	7	-0.279	8	0.092	9	-1.222	10	-0.574	11	1.201	12	0.000
POPVAL	ΗH	7	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	ΗH	./	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	HH	./	4	25	0.000	26	0.000	27	0.000			_			
POPVAL	НН	9	0	Ţ	0.000	2	0.000	3	0.944	4	-0.674	5	-0.428	6	-0.187
POPVAL	НН	9	Ţ	7	0.186	8	-0.077	9	0.836	10	0.349	11	-0.903	12	0.000
POPVAL	НН	9	2	13	0.000	14	0.000	15	0.000	16	0.000	17	0.000	18	0.000
POPVAL	нн	9	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	нн	9	4	25	0.000	26	0.000	27	0.000	,	0 401	-	0 0 7 1	~	0 0 0 1
POPVAL	нн	10	1	1	0.000	2	1 172	3	0.902	4	-0.431	5 1 1	0.3/1	10	-0.091
POPVAL	нн	10	T	/	0.389	8	-1.1/3	15	-0.039	10	1.01/	11	-0.357	12	0.000
POPVAL	нн	10	2	13	0.000	14	0.000	15	0.000	10	0.000	1/	0.000	18	0.000
POPVAL	нн	10	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	нн	10	4	25	0.000	26	0.000	27	0.000	,	0 005	-	0 000	~	0 010
POPVAL	нн	12	0	1	0.000	2	0.000	3	0.946	4	0.695	5	-0.006	10	-0.019
POPVAL	нн	12	1	1 2	0.209	14	1.015	1 -	0.068	10	-0.451	11	-0.424	12	0.000
POPVAL	нн	12	2	13	0.000	14	0.000	10	0.000	10	0.000	1/	0.000	18	0.000
POPVAL	нн	12	3	19	0.000	20	0.000	21	0.000	22	0.000	23	0.000	24	0.000
POPVAL	нн	12	4	20	0.000	20	0.000	27	0.000	4	0 000	F	0 201	c	0 1 5 2
POPVAL	нн	10	1	1	0.000	2	0.000	3	0.968	4	0.608		-0.201	10	0.155
POPVAL	нн	13	1	1 2	0.255	14	-0./11	1 -	0.304	10	0.404	11	-0.550	12	0.000
POPVAL	пн	エゴ 1つ	2	1 O	0.000	14	0.000	13 21	0.000	тр 20	0.000	1 / 2 2	0.000	ΤQ	0.000
FOFVAL	пп	13 13	3	72 73	0.000	20	0.000	21	0.000	22	0.000	23	0.000	∠4	0.000
	បប			<	0.000	∠0	0.000	21	0.000						
POPVAL	HH	1.3 2™7	4	2.5	0 000	2	0 000	2		л	0 510		0 0 5 5	r	0 227
POPVAL POPVAL	HH HH	13 2N 2N	4 0 1	1	0.000	2	0.000	3	0.754	4	0.543	5	0.055	6 1 2	0.337
POPVAL POPVAL POPVAL	HH HH HH	2N 2N 2N	4 0 1 2	1 7 1 2	0.000	2 8	0.000	3 9 15	0.754	4 10	0.543	5 11 17	0.055	6 12 1 º	0.337
POPVAL POPVAL POPVAL POPVAL	HH HH HH HH	2N 2N 2N 2N	4 0 1 2 2	1 7 13	0.000 0.503 0.000	2 8 14	0.000	3 9 15 21	0.754 0.615 0.000	4 10 16	0.543 0.392 0.000	5 11 17 22	0.055 -0.061 0.000	6 12 18	0.337 0.000 0.000
POPVAL POPVAL POPVAL POPVAL POPVAL	HH HH HH HH HH	13 2N 2N 2N 2N 2N	4 0 1 2 3	1 7 13 19	0.000 0.503 0.000 0.000	2 8 14 20	0.000 -0.488 0.000 0.000	3 9 15 21	0.754 0.615 0.000 0.000	4 10 16 22	0.543 0.392 0.000 0.000	5 11 17 23	0.055 -0.061 0.000 0.000	6 12 18 24	0.337 0.000 0.000 0.000

Box 3: For each atom, radial	parameters (Å ⁻¹) from $l = 0$ to $l =$	= 4
------------------------------	-----------------------------	-------------------------	-----

RADPRM RADPRM RADPRM RADPRM RADPRM	F N N C	1 1 2	0.994 0.985 0.985	0 0	3	5.777	2	1	5 777	2	1	5 777	З	1	5 777	4	1
RADPRM RADPRM RADPRM RADPRM	N N C	1 2 1	0.985 0.985	0	З				5.111	~	+	5.111	5	-	5.111	-	-
RADPRM RADPRM RADPRM	N C C	2	0.985		5	3.950	2	1	3.950	2	1	3.950	3	1	3.950	4	1
RADPRM RADPRM	C C	1		0	3	3.950	2	1	3.950	2	1	3.950	3	1	3.950	4	1
RADPRM	С	1	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
	0	2	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	3	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	4	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	5	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	6	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	7	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	8	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	9	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	10	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	11	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	12	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	С	13	0.996	0	3	2.961	2	1	2.961	2	1	2.961	3	1	2.961	4	1
RADPRM	HH	3	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	4	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	5	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	6	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	7	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	9	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	10	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	12	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	13	2.259	0	1	2.259	1	1	2.259	2	1						
RADPRM	HH	2N	2.405	0	1	2.405	1	1	2.405	2	1						

Box 4: high order cumulants (*x* 10⁴) on Cl and F as follows. 3rd order: C₁₁₁, C₁₁₂, C₁₂₂, C₁₁₃, C₁₂₃, C₁₃₃, C₂₂₂, C₂₂₃, C₂₃₃, C₃₃₃; 4th order: D₁₁₁₁, D₁₁₁₂, D₁₁₂₂, D₁₁₁₃, D₁₁₂₃, D₁₁₃₃, D₁₂₂₂, D₁₂₂₃, D₁₂₃₃, D₁₃₃₃, D₂₂₂₂, D₂₂₂₃, D₂₂₃₃, D₂₃₃₃, D₃₃₃₃.

CUMCOF	CL	1	4	0.00024	-0.00869	-0.01700	0.01241	0.06060
CUMCOF				-0.00680	-0.01837	0.03570	0.00169	0.01507
CUMCOF				0.00080	-0.00030	-0.00131	-0.00115	0.00346
CUMCOF				0.00515	-0.00292	0.00859	0.00343	0.00005
CUMCOF				-0.00118	0.00244	0.00434	0.00100	0.00096
CUMCOF	F	1	4	0.00785	-0.07838	-0.14336	-0.01212	0.12579
CUMCOF				0.08770	-0.14450	0.02494	0.03217	-0.05392
CUMCOF				0.01471	0.02535	0.02052	-0.01434	-0.00782
CUMCOF				0.02139	0.00697	-0.00083	0.01793	-0.00691
CUMCOF				-0.00368	0.00499	0.00337	0.00611	0.00584

S7. Bond lengths

S7.1 Experimental and theoretical geometries and convergence of the basis set

The pob-TZVP-rev2 triple-zeta valence + polarization basis set designed by Peintinger, Oliveira and Bredow for the computation of solid-state systems,^{7,8} combined with the PBE0 hybrid density functional,⁹ was used to calculate the equilibrium crystalline geometry of NCLBA with the code CRYSTAL17.¹⁰ The most relevant geometric parameter is undoubtedly the length of the N-Cl bond, whose value could be closely related to the well-known lability of the bond itself. The calculated value of this parameter, 1.816 Å, overestimates the experimental value by 0.067 Å (3.8%). In order to explain this discrepancy, it may be useful to study the convergence properties of the basis set with respect to the value of R_{N-CL} . As this cannot be done by periodic ab initio methods due to the excessive computational effort required, we focused on computation of the equilibrium geometry and electrostatic properties of the NCLBA molecule in vacuum. The pob-TZVP-rev2 basis set is based on the def2-TZVP basis set developed for molecules by the Ahlrichs group.¹¹ For this reason and in order to consistently and reliably compare the equilibrium geometries of NCLBA molecule in vacuum were calculated using the def2-TZVP basis set together with the PBE0 density functional.

			density fun	ctional		
basi	s set	М¶	PBE0		B3LYP	
			$R_{\text{N-Cl}}(\text{\AA})$	μ(D)	$R_{\text{N-Cl}}(\text{\AA})$	μ(D)
A5	def2-aug-TZVPP	1321	1.7219	2.338	1.7545	2.422
A4	def2-aug-TZVPP(-f)	1083	1.7322	2.458	1.7652	2.544
A3	def2-TZVP	879	1.7224	2.338	1.7545	2.387
A2	def2-TZVP(-f)	760	1.7335	2.376	1.7670	2.439
A1	pob-TZVP-rev2	651	1.8052	2.484	1.8398	2.530
В5	6-311++G(3df,3pd)	1101	1.7205	2.346	1.7514	2.400
B4	6-311G(3df,3pd)	1023	1.7220	2.534	1.7543	2.635
В3	6-311++G(2d,2p)	817	1.7405	2.457	1.7330	2.529
В2	6-311G(2d,2p)	739	1.7457	2.712	1.7812	2.833
B1	6-311G(d,p)	624	1.7533	2.741	1.7904	2.868
C1	aug-pc-1	780	1.7571	2.530	1.7914	2.607

Table S3 - N-Cl equilibrium distance and dipole moment for the N-chloro-N'-(4-fluoro-phenyl)benzamidine (NCLBA) molecule in vacuum.

[¶]Number of primitive gaussian functions.

The convergence properties of the basis set were analyzed by using bases which comprise a different number of primitive functions, such as the pob-TZVP-rev2 itself, the def2-TZVP (-f) which does not contain f functions and the def2-aug-TZVPP which is augmented by diffuse functions and

has 2p1d polarization for hydrogen, together with some of the valence triple-zeta plus polarization Pople basis sets, like 6-311G(d,p) and 6-311++G(2d,2p),¹² and Jensen polarization-consistent basis set, aug-pc-1,¹³ which is of double-zeta plus polarization quality augmented by diffuse functions. Calculations were performed with both the PBE0 and the popular B3LYP density functionals.^{14–17} The results are summarized in Table S3 and Figures S3-S5, focusing on the equilibrium distance R_{N-} c1 and the magnitude of the molecular dipole moment.

In addition to the methods reported in Table S3, the B2PLYP double-hybrid functional¹⁸ was also used, combined with the aug-pc-1 basis set, as it was indicated as one of the theoretical models that can provide an excellent compromise between accuracy and computational efficiency in the calculation of molecular dipole moments.^{19–21} The calculation yielded a value of $R_{N-Cl} = 1.7901$ Å, which is practically identical to those obtained with the B3LYP/6-311G(d,p) and B3LYP/aug-pc-1 models, and a value of the molecular dipole moment $\mu = 2.885$ D that is quite close to the B3LYP/6-311G(d,p) value.

Figure S3. Basis set convergence of equilibrium N-Cl bond length of NCLBA in vacuum for two basis set families (Ahlrichs: red symbols, Pople: grey symbols) and two density functionals (B3LYP: squares, PBE0: circles). For each density functional, the dashed lines connect the points belonging to the same basis set family. Vertical dotted lines mark the individual basis sets (A1: pob-TZVP-rev2, M = 651; A2: def2-TZVP (-f), M = 760; A3: def2-TZVP, M = 879; A4: def2-aug-TZVPP(-f), M = 1083; A5: def2-aug-TZVPP, M = 1321).

As shown in Figure S3, the equilibrium value of R_{N-Cl} calculated for the NCLBA molecule in vacuum decreases with some oscillations as the number M of the basis functions increases and eventually reaches a constant value. Both Ahlrichs and Pople families of basis functions, combined with the density functional B3LYP, nicely converge towards the experimental value of R_{N-Cl} . The PBE0 values follow the same trend as they are linearly correlated to the B3LYP values, as shown in Figure S4. However, they are sistematically lower than the B3LYP values by the average amount of

 $\Delta R_{av} = 0.0334(16)$ Å, except in the case of the 6-311++G(2d,2p) values which differ slightly by - 0.0075 Å and were not included in the least-squares regression line of Figure S4.

Figure S4. Relationship between B3LYP and PBE0 values of the N-Cl equilibrium distance for the basis sets specified in Table S3. Point B3 is not included in the regression line.

In Table S3 and Figure S3 we monitored the trend of R_{N-CL} values as a function of the extent *M* of the basis set. It is clear that for each model (eg PBE0 and B3LYP) and for each family of basis functions (Ahlrichs and Pople) the R_{N-CL} bond distance tends to a constant value as the size of the basis set increases. This result is not surprising, and it is to be expected that it can be found for all pairs of bonded atoms.

In Table S4, the experimental values (XRD) of the bond lengths in the amidine fragment of NCLBA are compared with the corresponding equilibrium values of the molecule in the crystalline state and in the vacuum, calculated using the functional PBE0 and the basis functions A0 through A5 (with A0 being the periodic equivalent of A1). This is graphically displayed in Figure S5. The linear regression line (red line) shows an almost quantitative agreement (r = 0.9994) between calculated and experimental values, slightly deviating from the 45° line of perfect agreement (dotted line) due to a slope of 0.976 (6). There are only two outliers that correspond to the values calculated with the pob-TZVP-rev2 basis set in the solid state (black circle, periodic PBE0/A0) and in the gas phase (red square, PBE0/A1); these two points were not included in the linear regression.

Table S4. Comparison of the experimental (XRD) geometry of the amidine fragment of NCLBA with the equilibrium geometries calculated in the crystalline state (A0: periodic PBE0/pob-TZVP-rev2) and for the molecule in vacuum (using the PBE0 density functional and the following Ahlrichs basis sets A1: pob-TZVP-rev2, M = 651; A2: def2-TZVP (-f), M = 760; A3: def2-TZVP, M = 879; A4: def2-aug-TZVPP(-f), M = 1083; A5: def2-aug-TZVPP, M = 1321).

	XRD	A0	A1	A2	A3	A4	A5
Bond lengths							
N1-Cl1	1.7490(2)	1.8162	1.8052	1.7335	1.7224	1.7322	1.7220
N1-C1	1.3064(2)	1.3051	1.2989	1.2927	1.2927	1.2923	1.2927
C1-N2	1.3533(2)	1.3478	1.3617	1.3593	1.3588	1.3602	1.3593
C1-C2	1.4893(2)	1.4827	1.4794	1.4822	1.4822	1.4823	1.4821
N2-C8	1.4207(2)	1.4162	1.4120	1.4074	1.4058	1.4108	1.4066
N2-H2N	1.0143(2)	1.0176	1.0152	1.0111	1.0110	1.0103	1.0105
Bond angles							
C1-N1-Cl1	113.24	112.64	112.18	113.96	114.30	113.89	114.25
N1-C1-N2	126.52	127.77	126.21	125.51	125.34	125.79	125.43
N1-C1-C2	112.99	111.46	113.33	114.12	114.21	114.37	114.34
N2-C1-C2	120.47	120.71	120.33	120.20	120.29	119.67	120.10
C1-N2-C8	127.87	128.85	128.32	128.39	128.83	126.86	128.39
C1-N2-H2N	118.50	115.99	113.59	113.34	113.48	113.71	113.58
C8-N2-H2N	113.50	115.13	117.01	116.20	116.19	116.68	116.38
Dihedral angles							
N2-C1-N1-Cl1	0.05	1.14	4.57	4.76	4.45	4.71	4.17
H2N-N2-C1-N1	1.54	0.86	6.62	5.83	7.16	5.05	6.69
C2-C1-N1-Cl1	178.31	178.30	179.63	179.97	179.89	179.99	179.96
C3-C2-C1-N1	118.40	120.94	134.57	135.76	135.69	134.86	134.18
H2N-N2-C8-C9	138.29	138.01	134.91	132.28	134.65	125.29	135.34
Intramolecular							
short distances							
Cl1-H2N	2.407	2.400	2.312	2.311	2.318	2.323	2.319
C1-C3	2.509	2.493	2.496	2.498	2.499	2.493	2.497
N2-H3	2.978	2.924	2.764	2.746	2.752	2.732	2.765
С8-Н3	2.928	2.914	2.773	2.794	2.787	2.803	2.824
C3-N2	3.120	3.081	2.997	2.987	2.991	2.975	2.995
C8-C2	2.985	3.001	3.028	3.039	3.043	3.008	3.031
C3-C8	3.188	3.197	3.143	3.166	3.165	3.146	3.170

The variation coefficient of $R_{\text{N-Cl}}$, calculated for the range of values A2-A5, amounts to 0.31% but increases to 2.26% if the two outliers A0 and A1 are also included. The coefficient of variation relative to the other bond distances reported in Table 2 and calculated for the complete range of values A0-A5, is consistently small: 0.37% (C1-N1), 0.34% (C1-N2), 0.07% (C1-C2), 0.25% (C8-N2), and 0.28% (N2-H2N). These results show that there are no significant differences in the values of the bond lengths passing from the molecule in the crystalline state to the gas phase. The observed discrepancy between the calculated values A0 and A1 and the experimental value of the N-Cl bond length is probably due to the inadequacy of the basis set pob-TZVP-rev2 in describing such a bond. In addition, this basis set, together with the 6-311G(d, p) one, is among the smallest used in our study (M = 651 and 624, respectively).

Figure S5. Comparison of the experimental values (XRD) of the bond lengths in the amidine fragment of NCLBA and the corresponding equilibrium values of the molecule in the crystalline state and in the vacuum, calculated using the functional PBE0 and the basis functions A0 through A5. The two values of RN-Cl, calculated for the molecule in the crystal (A0, black circle) and in the vacuum (A1, red square) with the pob-TZVP basis set, are not included in the regression.

Table S5. Comparison of point topological properties at the N–Cl covalent bond in different organic molecules, as obtained from PBE0/pob-TZVP-rev2 and D3-Grimme corrected quantum calculations on gas-phase molecules frozen at their in-crystal geometries. Data of N–Cl in NCLBA are highlighted in bold.

	Bond	Density	Laplacian		Hessian	Bond length		
Substance		/ e·Å–3	/ e·Å ⁻⁵	Ellıpt.	λ_1	λ_2	λ_3	/Å
AZCFOM01	Cl1-N4	1.3129	-2.70062	0.019	-6.814	-6.686	10.799	1.7214
AZCFOM01	Cl6-N9	1.3129	-2.70198	0.019	-6.813	-6.685	10.797	1.7214
ENAJIO	N10-Cl11	1.3781	-3.91452	0.014	-6.948	-6.851	9.885	1.6948
ENAJIO	N26-Cl27	1.3776	-3.90675	0.014	-6.946	-6.849	9.888	1.6950
FEVNUP	Cl1-N10	1.2684	-2.06948	0.012	-6.486	-6.407	10.824	1.7360
GUGREH	Cl1-N3	1.2683	-2.28459	0.023	-6.516	-6.370	10.601	1.7346
NUJJAF	N8-Cl10	1.3497	-3.30437	0.017	-6.981	-6.863	10.540	1.7067
NUXXOV	N5-Cl19	1.2881	-2.52804	0.019	-6.633	-6.512	10.616	1.7286
PASJAV	Cl44-N252	1.3346	-3.23972	0.011	-6.798	-6.723	10.281	1.7099
RAQBIX	N141-Cl16	1.2033	-1.05024	0.016	-6.159	-6.064	11.173	1.7636
SEMHOI	N8-Cl10	1.2870	-2.54446	0.055	-6.625	-6.281	10.361	1.7316
SEMHOI	N8-Cl11	1.2399	-1.81164	0.060	-6.420	-6.057	10.665	1.7500
SEMHOI	N9-Cl12	1.2893	-2.48808	0.011	-6.596	-6.522	10.630	1.7281
TIYDAI	Cl1-N2	1.2976	-2.58558	0.019	-6.696	-6.569	10.680	1.7264
TIYDOW01	Cl1-N8	1.3583	-3.47767	0.017	-6.916	-6.803	10.242	1.7022
TIYDOW02	Cl13-N20	1.3583	-3.47765	0.017	-6.916	-6.803	10.242	1.7022
TIYDOW	N15-Cl16	1.3764	-3.84732	0.017	-6.952	-6.837	9.942	1.6959
TIYDOW	N3-Cl4	1.3764	-3.84701	0.017	-6.952	-6.837	9.942	1.6950
TIYFAK	Cl1-N2	1.2990	-2.60807	0.017	-6.691	-6.577	10.661	1.7259
TUWDIY	Cl1-N3	1.3098	-2.84171	0.017	-6.706	-6.595	10.459	1.7196
XOLYAA	Cl2-N9	1.2995	-2.58249	0.012	-6.696	-6.617	10.731	1.7282
NCLBA QM sp ^a	Cl1-N2	1.2351	-1.43495	0.021	-7.3331	-7.2278	11.0618	1.7490
NCLBA QM periodic ^b	Cl1-N2	1.2350	-1.42000	0.020	-6.36	-6.21	11.15	1.7490
NCLBA expt ^c	CL1-N1	1.25(2)	5.1(4)	0.07(4)	-6.5(3)	-6.0(3)	17.6(2)	1.7490(2)

^a Single-point calculation on the molecule extracted from the crystal at 17.5 K.

^b Single-point calculation on the frozen crystal structure.

^c Multipole refinement against the experimental data. Estimated standard deviations are reported in parentheses.

Figure S6. Mulliken net charge of Cl vs. covalent bond length along the series of halogenated imine compounds (Section S2 SI) here considered. Calculations come from D3 Grimme–corrected PBE0 wavefunctions at frozen experimental geometries using a pob-TZVP-rev2 triple-zeta valence + polarization basis set. Full red dot: NCLBA *in vacuo*. Red triangle: NCLBA in the solid-state. The curve has equation $y = 2 \cdot 10^{20} \cdot \exp[-28.54]x$ and comes from a linear exponential fitting against the available data *in vacuo*.

S8. Electrostatic properties

Atom	Stewart	QTAIM
CL1	-0.273 (.029)	-0.194 (.028)
F1	-0.019 (.025)	-0.481 (.024)
N1	-0.025 (.031)	-0.543 (.026)
N2	-0.064 (.043)	-1.057 (.024)
C1	-0.086 (.029)	0.793 (.017)
C2	-0.170 (.034)	-0.204 (.021)
C3	0.006 (.044)	-0.054 (.026)
C4	0.032 (.041)	-0.074 (.024)
C5	-0.044 (.041)	-0.117 (.022)
C6	-0.030 (.041)	-0.046 (.021)
C7	-0.034 (.042)	-0.127 (.023)
C8	-0.008 (.032)	0.238 (.020)
C9	0.020 (.044)	-0.032 (.024)
C10	0.005 (.040)	-0.031 (.022)
C11	-0.079 (.036)	0.311 (.024)
C12	0.029 (.042)	0.035 (.024)
C13	-0.051 (.042)	-0.114 (.023)
H3	0.080 (.028)	0.152 (.017)
H4	0.091 (.028)	0.190 (.018)
H5	0.048 (.028)	0.130 (.018)
H6	0.055 (.029)	0.091 (.019)
H7	0.031 (.029)	0.104 (.018)
H9	0.056 (.028)	0.117 (.017)
H10	0.097 (.028)	0.161 (.017)
H12	0.054 (.030)	0.108 (.017)
H13	0.031 (.031)	0.115 (.018)
H2N	0.246 (.040)	0.527 (.015)

Table S6. Experimental atomic net charges in the NCLBA crystal from Stewart and QTAIM dma

 Table S7.
 Electrostatic properties of NCLBA.

* * * * * * * * * * * * *	* * * :	* * * *	* * * * * * * * * *	********	* * *	*******	* * * * * * * * * * * * *	***	* * * * * * * * * * * * *
PAMOC				Version	20	10-07-27			PAMOC
Uni	its	obt el	Molecula ained from ectrons, I	ar Electrost n different Debye, Debye	tat DM e-A	ic Multipole A of the ele ng, Debye-An	e Moments ectron densi ng**2, Debye	lty ≥-A	ng**3
Origin: Cer <nclba2></nclba2>	nte: 1	r of NCL	Mass - cpl=0.010;	Reference S 10.07.21 d	Sys da	tem: Eigen-a lp.tempo3 2a	axes of the a + 3a racc	in se	ertial tensor c cry; 2021
M.Barzaghi(*********	@is† ***;	CM.C:	nr.it *********	* * * * * * * * * * * *	* * *	* * * * * * * * * * * * *	WWW.j	Lst ***	m.cnr.it/pamoc ******
Traceless (Cart	tesi	an Tensors	 3 					
	L		<0>	Stewart	(esds)	QTAIM	(esds)
1	0	0	<q></q>	0.0000	(0.0000)	0.0000	(0.0000)
2	1	1	<x></x>	3.3051	(1.1121)	3.6247	(1.0011)
3	1	2	<y></y>	-3.1749	(1.2983)	-3.0622	(0.9385)
4	1	3	<z></z>	-0.1303	(1.0275)	-0.0985	(0.5238)
			Dipole	4.5848	(0.9605)	4.7461	(0.6003)
5	2	1	<xx></xx>	-26.7291	(5.0784)	-25.1837	(6.8059)
6	2	2	<xy></xy>	22.1901	(3.9881)	21.8188	(4.3187)
7	2	3	<yy></yy>	13.4098	(4.7394)	12.3772	(5.9101)
8	2	4	<xz></xz>	-4.0570	(2.1038)	-3.9900	(2.4549)
9	2	5	<yz></yz>	-1.9954	(2.2769)	-2.1960	(2.4693)
10	2	6	<zz></zz>	13.3193	(2.3758)	12.8064	(2.6895)
(< _{XX} > +	<yy< td=""><td>y> +</td><td><zz>)/3</zz></td><td>0.0000</td><td>(</td><td>0.0000)</td><td>0.0000</td><td>(</td><td>0.0000)</td></yy<>	y> +	<zz>)/3</zz>	0.0000	(0.0000)	0.0000	(0.0000)
		An	isotropy	7.4893	(0.5395)	7.3494	(0.7033)
11	3	1	<xxx></xxx>	13.5044	(16.4410)	18.4361	(32.7476)
12	3	2	<yyy></yyy>	83.4199	(14.0962)	84.2000	(22.9535)
13	3	3	<zzz></zzz>	-11.1537	(13.5617)	-12.7298	(17.0545)
14	3	4	<хуу>	32.8420	(12.8879)	31.7252	(22.7341)
15	3	5	<xxy></xxy>	-67.8919	(12.1178)	-68.1637	(21.0037)
16	3	6	<xxz></xxz>	56.7001	(10.0689)	57.0726	(13.4823)
17	3	7	<xzz></xzz>	-46.3463	(11.5389)	-50.1613	(23.2010)
18	3	8	<yzz></yzz>	-15.5280	(11.7689)	-16.0363	(16.6862)
19	3	9	<yyz></yyz>	-45.5464	(9.1931)	-44.3428	(13.8590)
20	3	10	<xyz></xyz>	-24.8764	(7.5278)	-24.3045	(10.7909)
<xxx> -</xxx>	+ <2	куу>	+ <xzz></xzz>	0.0000	(0.0000)	0.0000	(0.0000)
<ууу> -	+ <2	xxy>	+ <yzz></yzz>	0.0000	(0.0000)	0.0000	(0.0000)
<zzz> -</zzz>	+ <2	xxz>	+ <yyz></yyz>	0.0000	(0.0000)	0.0000	(0.0000)
Magnitude	of	vec	tor part	0.0000	(0.0000)	0.0000	(0.0000)
Project.	on	dip	ole dir.	0.0000	(0.0000)	0.0000	(0.0000)
21	4	1	<xxxx></xxxx>	-135.8839	(86.7214)	-97.3262	(333.8155)
22	4	2	<үүүү>	-97.3003	(69.0714)	-81.6378	(164.7968)
23	4	3	<zzzz></zzzz>	-401.3795	(54.4895)	-393.2643	(140.7862)
24	4	4	<xxxy></xxxy>	-222.0777	(67.7004)	-212.3872	(170.4764)
25	4	5	<xxxz></xxxz>	-34.1662	(40.7199)	-26.6456	(98.0714)
26	4	6	<ууух>	223.6825	(78.6435)	212.9915	(196.6390)

	27	4	7	<yyyz></yyyz>	197.3588	(42.7574)	191.8123	(94.9110)
	28	4	8	<zzzx></zzzx>	93.1131	(33.9757)	91.4009	(95.4273)
	29	4	9	<zzzy></zzzy>	120.1422	(42.1989)	125.6857	(96.4758)
	30	4	10	<xxyy></xxyy>	-84.0976	(61.7704)	-107.1501	(186.3519)
	31	4	11	<xxzz></xxzz>	219.9815	(47.9901)	204.4764	(172.7155)
	32	4	12	<yyzz></yyzz>	181.3980	(48.6390)	188.7880	(120.5702)
	33	4	13	<xxyz></xxyz>	-317.5010	(30.0437)	-317.4980	(70.4613)
	34	4	14	<yyxz></yyxz>	-58.9469	(40.6247)	-64.7553	(80.4396)
	35	4	15	<zzxy></zzxy>	-1.6049	(32.1860)	-0.6043	(68.7406)
<xxxx></xxxx>	+ <	XXY	үү>	+ <xxzz></xxzz>	0.0000	(0.0000)	0.0000	(0.0000)
<уууу>	+ <	XXY	уу>	+ <yyzz></yyzz>	0.0000	(0.0000)	0.0000	(0.0000)
<zzzz></zzzz>	+ <	уу2	zz>	+ <xxzz></xxzz>	0.0000	(0.0000)	0.0000	(0.0000)
<xxxy></xxxy>	+ <	ууу	yx>	+ <zzxy></zzxy>	0.0000	(0.0000)	0.0000	(0.0000)
<xxxz></xxxz>	+ <	ZZZ	zx>	+ <yyxz></yyxz>	0.0000	(0.0000)	0.0000	(0.0000)
<yyyz></yyyz>	+ <	ZZZ	zy>	+ <xxyz></xxyz>	0.0000	(0.0000)	0.0000	(0.0000)
	I	sot	trop	oic value	0.0000	(0.0000)	0.0000	(0.0000)

Figure S7: Basis set convergence of the molecular dipole moment magnitude of NCLBA in vacuum for two basis set families (Ahlrichs: red symbols, Pople: grey symbols) and two density functionals (B3LYP: squares, PBE0: circles). For each density functional, the dashed lines connect the points belonging to the same basis set family. Vertical dotted lines mark the individual basis sets (A1: pob-TZVP-rev2, M = 651; A2: def2-TZVP (-f), M = 760; A3: def2-TZVP, M = 879; A4: def2-aug-TZVPP(-f), M = 1083; A5: def2-aug-TZVPP, M = 1321).

Figure S8. Relationship between B3LYP and PBE0 values of the NCLBA dipole moment magnitude calculated using the basis sets specified in Section S7 above.

Comments to Figures S7 and S8:

Figure S8 shows that the B3LYP predictions somewhat overestimate the magnitude of the molecular dipole. However, two effects that are worth of note. First, the predictions tend to cluster around similar values as the magnitude of the basis set increases. Second, differences between B3LYP and PBE0 hamiltonians become smaller and smaller as the magnitude of the basis set increases. The same information can be retrieved from Figure S7. In our opinion, this is a good indication of convergence. We do not demand that convergence be exact, a requirement that would be fulfilled only in the limit of a complete basis set. The accurate estimation of static electrostatic properties is much more demanding that convergence on geometrical parameters and we consider that our simulations provide a reasonable and satisfactory tradeoff between the required accuracy and the computational cost. In any case, it is worth noting that the experimentally estimated standard deviations on the magnitude of the dipole moment are one order of magnitude larger than differences among the theoretically predicted dipole moment lengths.

Figure S9. Mutual orientation of molecular dipole moments in the experimental unit cell of NCLBA at T = 17.5 K. White spheres: origin of the dipole moment (molecular centre of mass, negative extremity). Red spheres: positive extremities. The dipole total moment is at the centre of the 3_1 helix motif and points upwards parallel to the *c* axis.

References

- Destro, R. Experimental Determination of Scan-Truncation Losses from Low-Temperature (16 K) Single-Crystal X-Ray Measurements. *Aust. J. Phys.* 1988, *41* (3), 503–510.
- (2) Destro, R.; Marsh, R. E. Scan-Truncation Corrections in Single-Crystal Diffractometry: An Empirical Method. *Acta Crystallogr. Sect. A Found. Crystallogr.* **1987**, *43* (5), 711–718.
- (3) Destro, R.; Marsh, R. E. On Predicting Scan Profiles: The Nature of the 'aberration Function'. *Acta Crystallogr. Sect. A Found. Crystallogr.* **1993**, *49* (1), 183–190.
- (4) Destro, R.; Ruffo, R.; Roversi, P.; Soave, R.; Loconte, L.; Lo Presti, L. Anharmonic Motions versus Dynamic Disorder at the Mg Ion from the Charge Densities in Pyrope (Mg3Al2Si3O12) Crystals at 30 K: Six of One, Half a Dozen of the Other. *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.* 2017, *73* (4), 722–736.
- (5) Gatti, C.; May, E.; Destro, R.; Cargnoni, F. Fundamental Properties and Nature of CH··O Interactions in Crystals on the Basis of Experimental and Theoretical Charge Densities. The Case of 3,4-Bis(Dimethylamino)-3-Cyclobutene-1,2-Dione (DMACB) Crystal. J. Phys. Chem. A 2002, 106 (11), 2707–2720.
- (6) Destro, R.; Roversi, P.; Barzaghi, M.; Lo Presti, L. Anharmonic Thermal Motion Modelling in the Experimental XRD Charge Density Determination of 1-Methyluracil at T = 23 K. *Molecules* **2021**, *26* (11), 3075.
- (7) Vilela Oliveira, D.; Laun, J.; Peintinger, M. F.; Bredow, T. BSSE-Correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. *J. Comput. Chem.* **2019**, *40* (27), 2364–2376.
- (8) Peintinger, M. F.; Oliveira, D. V.; Bredow, T. Consistent Gaussian Basis Sets of Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem. 2013, 34 (6), 451–459.
- (9) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. **1999**, 110 (13), 6158.
- (10) Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; et al. Quantum-Mechanical Condensed Matter Simulations with CRYSTAL. *Wiley Interdiscip. Rev. Comput. Mol. Sci.* 2018, 8 (4), 1360.
- (11) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, 7 (18), 3297–3305.
- (12) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 2008, 72 (1), 650.
- (13) Jensen, F. Contracted Basis Sets for Density Functional Calculations: Segmented versus General Contraction. J. Chem. Phys. 2005, 122 (7), 074111.
- (14) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 2002, 98 (45), 11623–11627.
- (15) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37* (2), 785.
- (16) Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1998**, 98 (7), 5648.
- (17) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. *Can. J. Phys.* **1980**, *58* (8), 1200–1211.
- (18) Grimme, S. Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. J. Chem. Phys. 2006, 124 (3), 034108.
- (19) Hickey, A. L.; Rowley, C. N. Benchmarking Quantum Chemical Methods for the Calculation of Molecular Dipole Moments and Polarizabilities. J. Phys. Chem. A 2014, 118 (20), 3678–

3687.

- (20) Hait, D.; Head-Gordon, M. How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. J. Chem. Theory Comput. 2018, 14 (4), 1969–1981.
- (21) Zapata, J. C.; McKemmish, L. K. Computation of Dipole Moments: A Recommendation on the Choice of the Basis Set and the Level of Theory. *J. Phys. Chem. A* **2020**, *124* (37), 7538–7548.