Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

### **Supporting Information**

# A sulfur-containing two-dimensional covalent organic framework with electrocatalytic hydrogen evolution in alkaline medium

Yunchao Ma<sup>a,b‡</sup>, Yue Fu<sup>a,b‡</sup>, Yuhang Han<sup>a,b</sup>, Jingyang Li<sup>a</sup>, Wei Jiang<sup>a</sup>, Yang Lu<sup>c</sup>, Chunbo Liu<sup>\*a</sup>, Guangbo Che<sup>\*a,d</sup> and Bo Hu<sup>\*b</sup>

<sup>a</sup> Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P.R. China

<sup>b</sup> College of Chemistry, Jilin Normal University, Siping, 136000, P.R. China
<sup>c</sup> College of Mathematics and Computer, Jilin Normal University, Siping, 136000, P.R. China
<sup>d</sup> Baicheng Normal University, Baicheng, 137000, P.R. China

#### **Table of contents**

| Section S1 | Materials and characterization                         | S3-S5      |
|------------|--------------------------------------------------------|------------|
| Section S2 | Gas adsorption isotherms                               | <b>S</b> 6 |
| Section S3 | Thermogravimetric Analysis                             | S7         |
| Section S4 | Stability test                                         | <b>S</b> 8 |
| Section S5 | Unit cell parameters and fractional atomic coordinates | S9         |
| Section S6 | References                                             | S10        |

#### Section S1. Materials and characterization

#### **S1.1 Materials and instruments**

All starting materials and solvents, unless otherwise noted, were obtained from J&K scientific LTD. Fourier transform infrared (FT-IR) spectra were acquired on a Thermoscientific Nicolet 4700 Fourier Transform Infrared Spectrometer with KBr pellet. Thermogravimetric analysis (TGA) was recorded on a STA 449 F3 *Jupiter* thermal analyzer with N<sub>2</sub> flow rate of 20 mL min<sup>-1</sup> at a heating rate of 5 °C min<sup>-1</sup> to 800 °C. PXRD data were collected on a PANalytical B.V. Empyrean powder diffractometer using a Cu K $\alpha$  source ( $\lambda = 1.5418$  Å) over the range of 2 $\theta = 2.0-40.0^{\circ}$  with a step size of 0.02° and 2 s per step. The sorption isotherm for N<sub>2</sub> was measured by Micromeritics ASAP 2460 analyzer with ultra-high-purity gas (99.99% purity). To estimate the pore size distributions, nonlocal density functional theory (NLDFT) was applied to analyze the N<sub>2</sub> isotherm on the basis of the model of N<sub>2</sub>@77K on carbon with slit pores and the method of non-negative regularization. The SEM images were obtained on JEOL 8100 scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was obtained by Escalab 250XI X-ray electron spectrometer (VG Scientific, America).

#### **S1.2 Electrochemical measurements**

The electrocatalytic properties of the catalysts for hydrogen evolution reaction were evaluated with a three-electrode configuration on a CHI 760E electrochemical workstation (CHI Instruments, Shanghai, China). To prepare the working electrode, 2 mg of the electrocatalyst combined with 300  $\mu$ L of ethanol and 4  $\mu$ L of Nafion was treated by ultrasonication for 20 min. Then, the asprepared suspension (12  $\mu$ L, corresponding to a mass loading of 1.14 mg cm<sup>-2</sup>) was slowly deposited on glassy carbon (GC, 3 mm diameter) electrode. After continuous purging with N<sub>2</sub> to remove dissolved gases, 1.0 M KOH solutions was used as alkaline electrolytes. The as-prepared sample was directly used as the working electrode. Hg/HgO and graphite rods were used as reference and counter electrodes in 1.0 M KOH solutions. Potential measurements were all converted to potential values relative to the reversible hydrogen electrode (RHE) based on E (vs. Hg/HgO) + 0.0591\*pH + 0.098. LSV curves were obtained in a nitrogen-saturated

electrolyte at a sweep rate of 10 mV/s. The ohmic potential drop (iR) losses that arise from the solution resistance were all corrected. The EIS was tested in the constant potential mode in the frequency range 1 Hz to 100 kHz. Cyclic voltammetry (CV) curves of the samples in different electrolytes were tested at different scan rates (20, 40, 60, 80 and 100 mV/s) and further calculated to obtain the bilayer capacitance value  $C_{dl}$ .

#### **S1.3 The HER reaction process**

In alkaline medium, the HER reaction process is assigned to the Volmer-Heyrovsky pathway<sup>[1,2]</sup>. Electrochemical reaction step:

| $\mathrm{H}^* + \mathrm{e}^- \rightarrow \mathrm{H}_{\mathrm{ads}}$          | Volmer reaction step    |
|------------------------------------------------------------------------------|-------------------------|
| $\mathrm{H}^* + \mathrm{H}_{\mathrm{ads}} + \mathrm{e}^{-} \to \mathrm{H}_2$ | Heyrovsky reaction step |
| $2H_{ads} \rightarrow H_2$                                                   | Tafel reastion step     |

Where H\* represents the catalytic site with an adsorbed H-species.

#### S1.4 The Tafel equation is presented as:

$$\eta = \mathbf{a} + \mathbf{b} \log(\mathbf{i}/\mathbf{i}_0)$$

 $\eta$  is the overpotential, i is current density,  $i_0$  is the exchange current density, b is the Tafel slope and a is the constant term.

#### S1.5 Double layer capacitance (C<sub>dl</sub>) calculation:

The double layer capacitance ( $C_{dl}$ ) was evaluated according to the following equation:  $C_{dl} = \Delta j/v$ , which  $\Delta j$  is the current density difference between anode and cathode at the potential corresponding to 0.25 V and v is the scan rate. The slope of the line plots corresponds to the double of  $C_{dl}$ .

#### S1.6 Faraday efficiency calculation:

(Amount of H<sub>2</sub> generated experimentally)

The Faraday efficiency calculation: 
$$FE\% = (Amount of H_2 generated theoretically) = \frac{nNF}{Q} \times 100\%$$

Where n equals to 2, N is the number of Hydrogen produced during the experiment (mol) and Q is the total charge passed through the reaction.

#### S1.7 Synthesis of JLNU-300



1,3,5-Tris(4-aminophenyl) benzene (TAPB) (0.04 mmol, 14.06 mg) and Thieno[3,2-b]thiophene-2,5-dicarboxaldehyde (TTDC) (0.06 mmol, 11.78 mg) were weighted into a Pyrex tube (volume: *ca* 20 ml with both length of 10 cm, neck length of 9 cm) Butanol (0.75 ml), 1,2-dichlorobenzene (0.25 ml) and 0.1 ml of aqueous acetic acid (6.0 mol/L) was added to the mixture. The tube was flash frozen at 77 K (LN<sub>2</sub> bath), evacuated to an internal pressure of 0.15 mmHg and flame sealed. Upon sealing the length of the tube was reduced to *ca*. 13 cm. The reaction mixture was heated at 120 °C for 72 h to afford a orange precipitate which was isolated by filtration over a medium glass frit and washed with anhydrous acetone (3 × 20 ml). The yield is about 71.0% (18.3 mg). The solvent was removed under vacuum at 80 °C to afford the corresponding products as orange powder of JLNU-300. Anal. Calcd for  $C_{72}H_{42}N_6S_6$ : C: 73.10; H: 3.55; N:7.11; S: 16.24. Found: C:72.98; H: 3.54; N: 7.09; S: 16.39. Solid-state <sup>13</sup>C NMR (500MH<sub>Z</sub>): 103.107, 116.58, 122.64, 126.77, 141.82, 148.00 ppm. FT-IR (KBr): 3316, 3223, 1660, 1578, 1480, 1408, 1220, 1146, 870, 832 cm<sup>-1</sup>.





Figure S1. N<sub>2</sub> adsorption-desorption isotherms of JLNU-300.



Figure S2. BET pole of JLNU-300 calculated from N<sub>2</sub> adsorption isotherm at 77 K.



Figure S3. The pore size distribution curve of JLNU-300.

Section S3: TGA



Figure S4. Thermogravimetric curves of JLNU-300 in  $N_2$  atmosphere.

# Section S4: Stability test



Figure S5. PXRD patterns of JLNU-300 after 3 d treatment in different organic solvents and 1.0MKOHsolutions.

## Section S5: Unit cell parameters and fractional atomic coordinates

| Space     | e group      | <i>P</i> 6 (No. 168)                               |       |  |
|-----------|--------------|----------------------------------------------------|-------|--|
| Calandat  | . J          | a = b = 39.9266 Å, c =3.5538 Å,                    |       |  |
| Calculate | ed unit cell | $\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$ |       |  |
| Маазия    | d wait call  | a = b = 38.7246 Å, c = 3.2531 Å,                   |       |  |
| Measure   | a unit cell  | $\alpha = \beta = 90^{\circ} \gamma = 120^{\circ}$ |       |  |
| Pawley 1  | refinement   | $R\omega p = 4.98$ % and $Rp = 3.87$ %             |       |  |
| Atom      | Х            | У                                                  | Z     |  |
| C1        | 0.31524      | 0.62643                                            | 0.000 |  |
| C2        | 0.35573      | 0.64836                                            | 0.000 |  |
| C3        | 0.37926      | 0.62913                                            | 0.000 |  |
| C4        | 0.41981      | 0.65109                                            | 0.000 |  |
| C5        | 0.44203      | 0.63298                                            | 0.000 |  |
| C6        | 0.42413      | 0.59266                                            | 0.000 |  |
| C7        | 0.38359      | 0.5705                                             | 0.000 |  |
| C8        | 0.3614       | 0.58863                                            | 0.000 |  |
| N9        | 0.44772      | 0.57499                                            | 0.000 |  |
| C10       | 0.43357      | 0.53787                                            | 0.000 |  |
| C11       | 0.45882      | 0.52107                                            | 0.000 |  |
| C12       | 0.49902      | 0.5433                                             | 0.000 |  |
| C13       | 0.48642      | 0.48122                                            | 0.000 |  |
| S14       | 0.43995      | 0.47161                                            | 0.000 |  |
| H15       | 0.30014      | 0.5935                                             | 0.000 |  |
| H16       | 0.43459      | 0.68401                                            | 0.000 |  |
| H17       | 0.47494      | 0.65111                                            | 0.000 |  |
| H18       | 0.36866      | 0.53758                                            | 0.000 |  |
| H19       | 0.32848      | 0.57051                                            | 0.000 |  |
| H20       | 0.4009       | 0.51766                                            | 0.000 |  |
| H21       | 0.51373      | 0.57621                                            | 0.000 |  |

**Table S1.** Unit cell parameters and fractional atomic coordinates for JLNU-300 were calculated on the basis of staggered **hcb** net.

### Section S6. References

- E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson and J. K. Nørskov, *J. Phys. Chem. C*, 2010, 114, 18182-18197.
- [2] M. Chhetri, S. Maitra, H. Chakraborty, U. V. Waghmare, C. N. R. Rao, *Energy Environ. Sci.* 2016, 9, 95-101.