Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Figure S1. SEM images [backscattered electron (BSE) mode] showing the complex microstructure and multiphase appearance of samples. According to the numbering of Table 1, the nominal compositions are La₃₄Ni₄₄Si₂₂ [sample 3 (a)], La_{33.3}Ni_{43.4}Si_{23.3} [sample 4 (b)], La₃₂Ni₄₆Si₂₂ [sample 5 (c)], La_{28.4}Ni_{43.4}Si_{28.2} [sample 6 (d)], La₂₅Ni₄₅Si₃₀ [sample 8 (e)] and La_{24.6}Ni_{43.4}Si₃₂ [sample 9 (f)]. In each sample, the composition (La:Ni:Si at. %) of the different phases present is highlighted.

Figure S2. Top: powder pattern of sample 2 (nominal composition at. % La 37.5, Ni 37.5, Si 25.0), showing in blue and grey, respectively, the experimental and the calculated curves of the La₃Ni₃Si₂ compound. No additional phases are present. Bottom: powder pattern of sample 5, having nominal composition La₃₂Ni₄₆Si₂₂ and containing the La₆Ni₇Si₄ compound as main phase; LaNi₂Si_, \approx La₃Ni₄Si₂ (yet unknown) and La₂(Ni,Si)₃ are present as secondary phases. The simulated pattern of the main phase is reported for comparison.

Figure S3. Top: powder pattern of sample **6** (nominal composition at. % La 28.4, Ni 43.4, Si 28.2), showing in blue and grey, respectively, the experimental and the calculated curves of the La₂Ni₃Si₂ compound. A few additional weak peaks are due to an impurity phase. Bottom: powder pattern of sample **7** (nominal composition at. % La 25, Ni 50, Si 25.0), almost single phase of the LaNi₂Si compound; the simulated pattern is represented in grey.

Figure S4. Powder pattern of sample 9 (nominal composition $La_{24.6}Ni_{43.4}Si_{32}$), containing the compound with approximate composition $La_2Ni_4Si_3$ (unknown structure), as predominant phase.

Figure S5. Coordination polyhedra in the crystal structures of LaNi₂Si (a), La₂Ni₃Si₂ (b), La₃Ni₃Si₂ (c) and La₆Ni₇Si₄ (d). La, Ni and Si atoms are represented in violet, pink and grey, respectively.

Compound	LaNi ₂ Si	La ₂ Ni ₃ Si ₂	La ₆ Ni ₇ Si ₄	La ₃ Ni ₃ Si ₂
La:Ni:Si [composition in at.%]	25 : 50 : 25	28.6 : 42.8 : 28.6	35.3 : 41.2 : 23.5	37.5 : 37.5 : 25
Isotypic crystal	SrCu ₂ Ga	Own structure	Pr ₆ Ni ₇ Si ₄	Ce ₃ Rh ₃ Si ₂
Formula weight [g/mol]	284.42	510.13	1357.79	649.04
Crystal system	Rhombohedral	Monoclinic	Orthorhombic	Orthorhombic
Pearson symbol	hR12	mP28	oP68	oP32
Space group	<i>R</i> ³ <i>m</i> (No. 166)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>Pbcm</i> (No. 57)	Pnma (No. 62)
Unit formula per cell, Z	3	4	4	4
Lattice parameters [Å, °]	<i>a</i> = 4.0263(3)	<i>a</i> = 6.8789(7)	<i>a</i> = 6.066(1)	<i>a</i> = 7.501(2)
	<i>c</i> = 15.066(2)	<i>b</i> = 6.2167(3)	<i>b</i> = 7.488(1)	<i>b</i> = 14.316(4)
		<i>c</i> = 12.214(1)	<i>c</i> = 29.682(5)	<i>c</i> = 6.1485(16)
		$\beta = 90.92(1)$		
Unit cell volume [ų]	211.48(4)	522.24(9)	1348.2(4)	660.3(3)
Calc. density, ρ [g/cm ³]	6.70	6.49	6.68	6.53
Absorption coefficient, μ [mm ⁻¹]	28.15	26.91	28.37	27.58
F(000)	381	904	2376	1132
Crystal shape	Elongated prism	Platelet	Block	Block
Crystal size [µm]	50 × 80 × 160	50 x 100 x 120	70 x 70 x 80	60 x 70 x 80
Scan mode	θ-ω	θ-ω	θ-ω	θ-ω
Theta range [°]	$2 \le \vartheta \le 32$	$2 \le \vartheta \le 30$	$2.5 \le \vartheta \le 33.5$	$3.6 \le \vartheta \le 31.4$
	$-6 \le h \le 6$	$0 \le h \le 9$	$-9 \le h \le 9$	$-10 \le h \le 10$
Ranges of <i>n, k, I</i>	$-6 \le k \le 6$	$-8 \le k \le 8$	$-11 \le k \le 11$	$-20 \le k \le 19$
	− 22 ≤ <i>l</i> ≤ 22	− 17 ≤ <i>l</i> ≤ 17	− 44 ≤ <i>l</i> ≤ 44	$-8 \le l \le 8$
Number of collected reflections	970	3300	26857	6347
Number of independent reflections	116	1512	2503	1054
Reflections with $F_0 > 4\sigma$ (F_0)	103	1080	1995	1044
Absorption correction method	ψ-scans, sphere	ψ-scans, sphere	multiscan	multiscan
Solution method	Patterson	Direct Methods	Intrinsic Phasing	Intrinsic Phasing
Number of refined parameters	9	65	81	41
R ₁ ^a	0.012	0.032	0.029	0.022
$wR_2 b (F_o^2)$, all data	0.034	0.064	0.053	0.055
R_{int} ^c (F_o^2)	0.059	0.044	0.046	0.040
Goodness-of-fit on F _o ²	1.273	0.920	0.923	1.249
Secondary extinction correction x	0.026(2)	0.0078(2)	_	0.0052(3)

Table S1. Details of the single crystal X-ray data collection and structure refinements of $LaNi_2Si$, $La_2Ni_3Si_2$, $La_6Ni_7Si_4$ and $La_3Ni_3Si_2$ (T = 295 K).

 ${}_{a} R_{1}(F) = \left[\sum_{i} \left(|F_{o}| - |F_{c}|\right)\right] / \sum_{i} |F_{o}|; \qquad {}_{b} wR_{2}(F^{2}) = \left[\sum_{i} w(F_{o}^{2} - F_{c}^{2})^{2}\right] / \left[\sum_{i} w(F_{o}^{2})^{2}\right]^{\frac{1}{2}}, w \text{ is a weight function different for each compound;}$ ${}_{c} R_{int}(F_{o}^{2}) = \left[\sum_{i} |F_{o}^{2} - \overline{F}_{o}^{2}|\right] / n \text{, is an internal agreement index quantifying the deviation of n equivalent intensities from the average value.}$

Table S2. Structure types adopted by lanthanide or alkaline earth ternary intermetallics with 1:2:1stoichiometry: crystal data, number and representatives of each family.²

Structure Type	Pearson Code – Space Group	Wyckoff letters	Lattice Parameters [Å]	Number	Representatives
BaLi ₂ Si	oP8 – Pmmn	4e, 2b, 2a	a = 4.74 b = 6.75	3	KLi ₂ As BaNi ₂ Ge
PrCo ₂ Ga	oP8 – Pmma	2 x 2f, 2e, 2a	c = 6.25 $a = 5.021$ $b = 4.043$ $c = 6.860$	15	RCo ₂ Ga, R=La,Pr,Nd RCo ₂ In, R=Pr-Sm,Gd-Ho,Y RNi ₂ In, R=La,Pr,Nd LaCo ₂ -Zn ₂ -
GdPt ₂ Sn (or ZrPt ₂ Al)	hP8 – P6 ₃ /mmc	4f, 2c, 2a	<i>a</i> = 4.532 <i>c</i> = 9.065	29	$\begin{array}{c} \text{RNi}_{2}\text{Sb}, \text{RPt}_{2}\text{Al}, \text{R}=Zr, \text{Hf}\\ \text{RPd}_{2}\text{ln}, \text{R}=La, \text{Ce}\\ \text{RPt}_{2}\text{In}, \text{R}=\text{Ce}, \text{Gd}, \text{Tb}-\text{Ho}, \text{U}\\ \text{RPt}_{2}\text{Sn}, \text{R}=\text{Gd}, \text{Tb}, \text{Er}-\text{Lu}, \text{Y}, \text{U}\\ \text{UT}_{2}\text{Sn}, \text{T}=\text{Cu}, \text{Au}\\ \text{RLi}_{2}\text{Ge}, \text{R}=\text{La}, \text{Ce}\\ \text{CaNi}_{2}\text{Si}, \text{RNi}_{2}\text{Ge}, \text{R}=\text{Sr}, \text{Pr}, \text{Nd}\\ \text{LaCu}_{2}\text{Mg}, \text{MgAu}_{2}\text{Ga}\end{array}$
CeLi ₂ Ge (or AlCr ₂ C or LiCu ₂ Sn)	hP8 – P6 ₃ /mmc	4 <i>f</i> , 2 <i>c</i> , 2 <i>a</i>	a = 4.537 c = 7.568	4	RLi ₂ Ge, R=La-Nd
SrCu ₂ Ga	$hR12 - R^{3}m$	6 <i>c</i> , 3 <i>b</i> , 3 <i>a</i>	a = 4.271 c = 15.925	3	BaCu ₂ Ga LaNi ₂ Si
CePt ₂ B	<i>hP</i> 12 – P6 ₂ 22	6 <i>i</i> ,3 <i>d</i> ,3 <i>c</i>	a = 5.4811 c = 7.8830	7	RPt ₂ B, R=La-Nd,Tm,Lu,Y
YPd ₂ Si (Fe ₃ C der.)	oP16 – Pnma	8d, 2 x 4c	a = 7.300 b = 6.927 c = 5.499	62	$\begin{array}{c} RPd_2Ga, R=La-Sm, Gd-Dy, Y\\ RPd_2Si, RPd_2Ge, R=La-Lu, Y\\ RNi_2Si, R=Tb, Dy, Er, Tm, Y\\ RPt_2Si, R=Gd-Lu, Y\\ MgNi_2P, UAu_2Al\\ RPd_2Al, R=Ce-Pr\\ CaCd_2X, X=Pd, Pt\\ CaMg_2X, X=Rh, Pd, Pt \end{array}$
EuAl ₂ Ge	oP16 – Pnma	4 x 4 <i>c</i>	a = 7.294 b = 4.306 c = 11.237	1	
CeRh ₂ Si (CeNiSi ₂ -type occupation variant)	oS16 – Cmcm	4 x 4 <i>c</i>	a = 4.0413 b = 17.730 c = 4.0675	3	RPt ₂ Si, R=Ce,Eu
YPd ₂ Sn (MnCu ₂ Al Heusler phase)	cF16 - Fm-3m	8c, 4b, 4a	<i>a</i> = 6.7144 <i>a</i> = 5.495	~200	$\begin{array}{c} RMg_2Cu, R=Ce, Tb\\ RMg_2Ag, R=La-Gd\\ RMg_2Zn, R=Pr, Nd\\ LiCa_2X, X=Tl, Si, Ge\\ MgNi_2X, X=Sn, Sb\\ MgPd_2X, X=Ga, Sb\\ MgPd_2X, X=Ga, Sb\\ MgM_2ln, M=Li, Ni, Pd\\ MgLi_2X, X=Ga, In, Tl, Ge, Sn, Sb, Bi, Ag, Au, Zn, Cd, Hg\\ ScM_2Ga, M=Ni, Pd, Cu\\ ScM_2Ga, M=Ni, Pd, Cu\\ ScM_2Al, M=Cu, Ag, Au, Ni, Pd, Pt\\ ScM_2In, M=Ni, Pt\\ ScM_2Sn, M=Pt, Rh\\ ScCo_2X, X=Ga, Ge, Sn\\ RPd_2In, R=Gd, Dy, Er-Lu, Sc, Y\\ RM_2In, R=La-Lu, Sc, Y; M=Cu, Ag, Au\\ RPd_2Tl, R=Sm-Er, Y\\ RNi_2Sn, R=Yb, Lu, Sc\\ RPd_2Sn, R=Gd-Lu, Sc, Y\\ RPd_2Sn, R=Gd-Lu, Sc, Y\\ RPd_2Sb, R=Gd-Er, Yb, Y\\ RPd_2Bb, R=Pr, Sm-Li, Sc, Y\\ RPd_2Bi, R=Pr, Sm-Er, Y\\ RZn_2Mg, R=Ce, Tb\\ RCo-Zn, R=La, Ce, Sm\\ \end{array}$
Y Rh ₂ S1 (CeNi ₃ der.)	hP24 – P6 ₃ /mmc	12k, 4f, 2d, 2c, 2b, 2a	a = 5.495 c = 15.030		$\label{eq:constraint} \begin{array}{l} KCo_2Zn, R=La, Ce, Sm \\ RNi_2Zn, R=La, Ce \\ RRh_2Si, R=Er, Y; \\ RRh_2Ge, R=Sm, Er, Y \\ SmCo_2Ga, LuNi_2Ga, TbFe_2-Ga \end{array}$
DyB ₂ C	$tP32 - P4_2/mbc$	8g, 3 x 8h	a = 6.791 c = 7.522	9	RB ₂ C, R=Tb-Lu,Sc,Y
CeIr ₂ Si	$tI32 - I4_1/amd$	3 x 8 <i>e</i> , 4 <i>b</i> , 4 <i>a</i>	a = 4.0698 c = 35.408	4	RRh ₂ Si, RIr ₂ Si, R=La,Ce

Table S3. Atomic coordinates for the VASP optimizations based on the CaNi₂Si structure (hP8).

Atom	Site	x	У	Z
Ca/La	2 <i>c</i>	1/3	2/3	1/4
Ni	4 <i>f</i>	1/3	2/3	0.96051
Si	2a	0	0	0

a = 4.004, c = 9.886 Å.