Supporting Information for

Aggregate emission behaviors and reversible mechanofluorochromic properties of α-cyanostilbene functionalized indolo[3,2-*b*]carbazole derivatives

Yuyang Zhang*, Fuqiang Chen, Jie Zheng, Zhongming Song, Yanping Wang, Yueyuan Mao, Jing Tang, Jiahao Guo and Xuchun Wang

Contents

- 1. The spectroscopic characterization.
- 2. Summary of crystallographic data.
- 3. Single crystal data.
- 4. The molecular packing structure.
- 5. The UV-vis spectra and fluorescence spectra in different solvents.
- 6. Photophysical data in different polar solvents.
- 7. Optimized molecular structure and HOMO-LUMO levels.
- 8. Aggregates fluorescent behaviors.
- 9. The fluorescent spectra in solid state.
- 10. Emission wavelength change during the ground-fumed cycles.
- 11. The DSC curves of pristine and ground state.

Fig. S1 FT-IR spectrum of ICZH.

Fig. S2 ¹H NMR spectrum of **ICZH** in CDCl₃.

Fig. S3 ¹³C NMR spectrum of ICZH in CDCl₃.

Fig. S5 FT-IR spectrum of ICZF.

Fig. S6 ¹H NMR spectrum of ICZF in CDCl₃.

Fig. S8 HP-MS spectrum of ICZF.

Fig. S9 FT-IR spectrum of ICZCH₃.

Fig. S10 ¹H NMR spectrum of ICZCH₃ in CDCl₃.

Fig. S11 ¹³C NMR spectrum of ICZCH₃ in CDCl₃.

Fig. S12 HP-MS spectrum of ICZCH₃.

Fig. S14 ¹H NMR spectrum of **ICZCF₃** in CDCl₃.

Fig. S15 ¹³C NMR spectrum of ICZCF₃ in CDCl₃.

Identification	ICZCF ₃	Data/restraints/paramete	6759/6/400	
		rs		
Wavelength (Å)	1.54178		$R_I = 0.2572$	
		Final R indices $[1>2\sigma(1)]$	$wR_2 = 0.5680$	
Crystal system	triclinic			
Space group	pī	Empirical formula	$C_{78}H_{68}F_6N_4$	
<i>a</i> (Å)	10.0055(2)	Formula weight	1175.36	
<i>b</i> (Å)	13.0597(3)	F(000)	618	
<i>c</i> (Å)	14.2217(3)	Volume	1696.84(6)	
a (°)	101.9360(10)	Z, Calculated density	2, 1.150 g/cm ³	
eta (°)	104.1170(10)	Goodness-of-fit on F^2	2.705	
γ (°)		Largest diff. peak and	3.883 and -0.629	
	101.9760(10)	hole	e.A ⁻³	
Reflections collected /	14629/6759	θ range for data	3.33 to 74.47 °	
unique	[R(int) = 0.0342]	collection		
Limiting indices	$-12 \le h \le 11$		D 0.0755	
	$-16 \le k \le 15$	R indices (all data)	$R_1 = 0.2/56$	
	$-17 \le l \le 17$		$wK_2 = 0.5934$	

Table S1 Summary of crystallographic data for compound ICZCF₃

Table S2 Selected Bond distance (Å), bond angle (°) and torsion angle (°) for compound ICZ-CF₃

Bond distance (Å)		bond angl	e (°)	torsion angle °)	
F3-C1	1.326(9)	C31-N2-C24	108.0(4)	F2-C1-C2-C5	-121.24
N2-C32	1.463(6)	C31-N2-C32	123.0(5)	F2-C1-C2-C3	58.02
N2-C31	1.385(7)	C15-C14-C17	121.7(5)	C1-C2-C3-C4	179.08
N2-C24	1.403(7)	C13-C14-C17	119.9(5)	N1-C9-C8-C7	2.23
N1-C9	1.161(8)	C5-C2-C1	122.3(6)	C10-C8-C7-C6	169.46
C22-C21	1.382(7)	F2-C1-F3	105.7(7)	C11-C10-C8-C9	-7.76
C22-C17	1.407(8)	F2-C1-C2	114.4(6)	C13-C14-C17-C22	-142.14
C23-C20	1.500(6)	C6-C7-C8	120.9(5)	C21-C20-C23-C24	92.17
C14-C17	1.478(7)	N2-C32-C33	115.5(5)	C23-C24-N2-C32	2.70
C11-C10	1.464(7)	C34-C33-36	108.4(14)	C33-C32-N2-C31	92.63
C8-C7	1.483(7)	C27-C26-C25	135.4(5)	C20-C23-C25-C26	1.82
C31-C26	1.417(7)	C31-C26-C25	106.1(5)	C32-C33-C34-C35	162.91
C29-C28	1.374(9)	C32-C33-C36	105.3(8)	C33-C36-C37-C38	152.68
C29-C30	1.383(8)	C24-C25-C26	106.9(4)	F1-C1-C2-C3-C5	-114.94

Fig. S17 (A) The molecular packing by hydrogen bond interaction and (B) C- $H^{...}\pi$ interaction (hydrogen atoms are omitted for the sake of clarity).

Fig. S18 (A, C) The UV-vis spectra and (B, D) fluorescence spectra of compounds ICZH and ICZCH₃ in different solvents, respectively.

Compounds	Solvents	λ[a] max	λ[b] max	ε (×10 ⁴) ^[c]	$\Delta \nu$ ^[d]	$\Phi^{[e]}$
ICZH	Benzene	339	544	9.58	11116	
	DCM	338	436	7.68	6650	
	THF	337	437	9.85	6790	
	Ethyl acetate	336	434	7.28	6720	17.53%
	EtOH	336	/	1.44	/	
	MeCN	336	433	1.80	6667	
	DMF	339	/	10.42	/	
ICZF	Benzene	339	541	7.90	11014	
	DCM	338	436	9.03	6650	pristine:
	THF	337	438	10.38	6843	8.31%
	Ethyl acetate	336	438	9.64	6931	
	EtOH	334	451	1.40	7767	ground:
	MeCN	337	436	2.02	6738	11.73%
	DMF	338	443	7.08	7012	
ICZCH3	Benzene	339	526	5.98	10487	
	DCM	337	434	6.44	6632	
	THF	338	436	7.07	6650	
	Ethyl acetate	336	433	4.57	6667	17.10%
	EtOH	336	432	1.66	6614	
	MeCN	337	432	1.56	6525	
	DMF	338	432	5.08	6438	
ICZCF ₃	Benzene	338	581	1.56	12374	
	DCM	338	436	3.21	6650	pristine:
	THF	337	436	1.87	6738	5.80%
	Ethyl acetate	337	428	2.26	6309	
	EtOH	336	431	1.57	6560	ground:
	MeCN	337	432	2.39	6525	5.08%
	DMF	337	437	1.56	6790	

Table S3 Photophysical properties of compounds ICZ-H, ICZ-F, ICZ-CH3 and ICZ-CF3 indifferent polar solvents.

[a] Peak position of the longest absorption band. [b] Peak position of fluorescence emission, excited at the absorption maximum. [c] Molar absorptivity (L/cm/mol). [d] Stokes' shift in cm⁻¹.
[e] Quantum yields in the solid state.

Fig. S19 Optimized molecular structure and molecular orbital amplitude plots of the HOMO and LUMO levels and electron cloud distribution of ICZH, ICZF, ICZCH₃ and ICZCF₃ calculated using the B3LYP/6-31G* basis set.

Fig. S20 (A, D) The UV-vis absorption and (B, E) fluorescence spectra of compoundsICZH and ICZCH₃ in THF-water mixtures with different water volume fractions; (C, F) the effect of water volume fractions on the emission intensity of 440 nm.

Fig. S21 Size distributions of ICZH, ICZF, ICZCH₃ and ICZCF₃ in THF-H₂O mixtures ($f_w = 50\%$).

Fig. S22 Emission spectra of compound ICZH (A) and ICZCH₃ (B) of pristine and ground samples. Inset: Photographs under room light and 365 nm light.

Fig S23 Repeated switching of compounds ICZF (A) and ICZCF₃ (B) by groundfumed cycles.

Fig. S24 DSC curve of compounds ICZF (A) and ICZCF₃ (B) in the pristine and ground powders. (Scan rate: 10 °C min⁻¹).