Supporting information

Novel Scandium-MOF Nanocrystals as Peroxidase-mimicking Nanozymes for Highly Sensitive Colorimetric Detection of Ascorbic Acid in Human Serum

Yiqian Su^a, Hongjiao Wu^a, Jiaqi Chen^a, Huiqin Li^a, Pengcheng Lin^{a,*}, Wei Xiao^b and

Donglin Cao^{b,*}

^aGuangdong Provincial Key Laboratory on Functional Soft Condensed Matter,

Materials and Energy School, Guangdong University of Technology

Panyu District, Guangzhou, 510006, China

E-mail: pclin@gdut.edu.cn

^bDepartment of Laboratory Medicine, Guangdong Second Provincial General Hospital,

Guangzhou, 510317, China

E-mail: xkevent@foxmail.com, caodl@126.com

Figure S1	Zeta potential of the Sc-MOF nanozyme dispersion.	3
Figure S2	EDX-analysis of the element composition of the Sc-MOF nanozyme.	4
Table S1	The element composition of Sc-MOF nanozyme.	5
Figure S3	Full-survey-scan spectrum of the Sc-MOF nanozyme sample.	6
Figure S4	The gradually deepened color of dispersion containing TMB and H_2O_2 along with the increased concentration of Sc-MOF nanozyme from 0 to 50 mg L ⁻¹ , a-g: 0, 0.5 mg L ⁻¹ , 2 mg L ⁻¹ , 5 mg L ⁻¹ , 10 mg L ⁻¹ , 25 mg L ⁻¹ and 50 mg L ⁻¹ .	7
Fig S5	Zeta potential of the binary Sc-MOF nanozyme-TMB dispersion.	8

Figure S1. Zeta potential of the Sc-MOF nanozyme dispersion.

Figure. S2. EDX-analysis of the element composition of the Sc-MOF nanozyme.

Elements	At%
С	29.04
0	59.46
Sc	11.50
Total	100.00

Table S1. The element composition of Sc-MOF nanozyme.

Figure. S3. Full-survey-scan spectrum of the Sc-MOF nanozyme.

Figure. S4. The gradually deepened color of dispersion containing TMB and H_2O_2 along with the increased concentration of Sc-MOF nanozyme from 0 to 50 mg L⁻¹, a-g: 0, 0.5 mg L⁻¹, 2 mg L⁻¹, 5 mg L⁻¹, 10 mg L⁻¹, 25 mg L⁻¹and 50 mg L⁻¹.

Figure. S5. Zeta potential of the binary Sc-MOF-TMB dispersion.