Electronic supporting information

Bis-pyrazolone-based dysprosium(III) complexes: zero-field single-molecule magnet behavior in the $[2 \times 2]$ grid Dy^{III}₄ cluster

Tesfay G. Ashebr,^{a,b,c} Xiao-Lei Li,^a Chen Zhao^{a,b} Qianqian Yang,^{a,b} and Jinkui Tang*^{a,b}

- ^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. E-mail: tang@ciac.ac.cn
- ^b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- ^c Department of Industrial Chemistry, Addis Ababa Science and Technology University, P. O. Box 16417, Addis Ababa, Ethiopia

Ligand synthesis Scheme

Scheme S1. Jensen's method¹ for pyrazolone-based ketones synthesis (top box) and ligands (H_2L1 and H_2L2) synthesis (bottom box).

Fig. S1. ¹HNMR of H₂L1 in DMSO (top) and H₂L2 in CDCl₃ (bottom). Red numbers are the simulated chemical shifts (ppm).

Fig. S2. FT-IR (ATR) spectrum of solid samples for complexes of 1 and 2 (left) and TGA curves in powder forms showing weight loss of co-crystallized solvents as well as masked solvents in the thermal stability range, and weight loss with degradation above 380 °C for 1 and 300°C for 2 at scan rate: 3 °C/min in N₂ atmosphere (right).

Fig. S3. Experimental and simulated X-ray powder diffraction (P-XRD) patterns for 1 (left) and 2 (right).

Crystal structure

Table S1	Crystallographic i	information for com	plexes 1 and 2. ^{2a&b}

Compound reference	1	2
Chemical formula	C ₁₀₂ H ₁₀₈ Dy ₄ N ₃₂ O ₁₈	C ₁₆₄ H ₁₆₆ Dy ₂ N ₃₆ O ₁₂
Formula Mass g/mol	2720.2	3158.32
Crystal system	monoclinic	monoclinic
<i>a</i> (Å)	19.8689(16)	35.329(3)
<i>b</i> (Å)	31.487(3)	16.6830(14)
<i>c</i> (Å)	21.8015(16)	30.194(2)
α (°)	90	90
β (°)	116.894(3)	104.510(3)
γ (°)	90	90
Unit cell volume (Å ³)	12164.2(17)	17228(2)
Temperature (K)	300	180
Space group	<i>C2/c</i> (no.15)	<i>C2/c</i> (no.14)
Ζ	4	4
$\rho_{\rm calc} ({\rm g/cm^3})$	1.483	1.218
F(000)	5400.0	6520.0
Radiation ($\lambda = 0.71073$)	Μο-Κα	Μο-Κα
Reflections collected	116732	66146
Independent reflections	16372	15339
R _{int}	0.0625	0.1414
GOF on F^2	1.518	1.013
R_1 (I $\geq 2 \sigma$ (<i>I</i>))	0.1195	0.0778
wR_2 (all data)	0.4113	0.2455
CCDC number	2181104	2181105

Complex 1						
Atoms	Bond distances [Å]	Atoms	Bond angles [°]			
Dy1-01	2.379(13)	O3-Dy1-O1	137.4(5)			
Dy1-O2	2.4200(9)	O3-Dy1-O2	154.8(4)			
Dy1-O3	2.270(15)	O4-Dy1-O5	135.8(5)			
Dy1-O4	2.211(17)	O4-Dy1-O7 ⁱ	155.5(5)			
Dy1-O5	2.345(12)	O5-Dy1-O1	135.3(5)			
Dy1-O7 ⁱ	2.3387(8)	N3-Dy1-N1	141.5(5)			
Dy1-N1	2.619(16)	O5 ⁱ -Dy2-O1	131.6(4)			
Dy1-N3	2.592(17)	O6 ⁱ -Dy2-O5 ⁱ	133.0(5)			
Dy2-O1	2.442(14)	O6 ⁱ -Dy2-O7	156.9(4)			
Dy2-O2	2.3903(8)	O9-Dy2-O1	132.7(5)			
Dy2-O5 ⁱ	2.412(13)	O9-Dy2-O2	160.3(4)			
Dy2-O6 ⁱ	2.235(14)	N7-Dy2-N6	132.6(6)			
Dy2-07	2.2719(8)	-				
Dy2-O9	2.271(14)					
Dy2-N2	2.596(17)					
Dy2-N13 ⁱ	2.532(17)					
Dy1…Dy2	4.0086(15)					
Dy1…Dy2 ⁱ	3.8695(12)					
DyDy(packing-shortest)	9.9726(5)					
	Complex	2				
Atoms	Bond distances [Å]	Atoms	Bond angles [°]			
Dy1-O2	2.192(6)	O2-Dy1-O1	138.8(2)			
Dy1-O3	2.262(6)	O3-Dy1-O5 ⁱ	150.2(2)			
Dy1-O1	2.372(6)	O4 ⁱ -Dy1-O1	133.2(2)			
Dy1-O4 ⁱ	2.360(5)	O5 ⁱ -Dy1-O4 ⁱ	138.1(2)			
Dy1-O5 ⁱ	2.279(6)	N15 ⁱ -Dy1-N2	139.2(2)			
Dy1-N2	2.565(7)	N1-Dy1-N2	135.5(3)			
Dy1-N15 ⁱ	2.565(8)					
Dy1-N1	2.535(11)					
Dy1…Dy1 ⁱ	7.1451(9)					
DyDy(packing-shortest)	10.0499(11)					

 Table S2 Selected important bond distances and bond angles of 1 and 2.

Shape analysis

Table S3 The CShM values calculated by SHAPE 2.1 for complexes of **1** and **2** (highlighted are the shape of the complexes).^{2c}

Coordination Geometry Complexe		es	
	1		2
	Dy1	Dy2	Dy1
Hexagonal bipyramid (D_{6h})	13.636	12.185	14.718
Cube (O_h)	11.053	10.217	12.691
Square antiprism (D_{4d})	3.027	4.740	3.150
Triangular dodecahedron (D_{2d})	1.888	2.653	1.315
Johnson gyrobifastigium J26 (D _{2d})	9.937	9.529	10.544
Johnson elongated triangular bipyramid J14 (D_{3h})	25.591	24.771	26.475
Biaugmented trigonal prism J50 (C_{2v})	2.482	3.645	2.237
Biaugmented trigonal prism (C_{2v})	2.254	3.142	2.028
Snub diphenoid J84 (D_{2d})	2.224	2.394	2.136

Crystal structure details

Fig. S4. Packing model along with b axis view of complex **1** respectively. Color code; green, Dy; red, O; blue, N; gray, C.

Fig. S5. Packing model along with b axis view of complex **2** respectively. Color code; green, Dy; red, O; blue, N; gray, C.

Fig. S6. (a, b) Coordination polyhedrons observed around the central metal atoms of complex of **1**. (c) μ_2 -O_{carbonyl} and μ_2 -OH⁻ bridging motifs for complex **1** in b axis view. (d) Coordination polyhedra observed in complex **2**. Color code; dark blue, Dy; red, O; blue, N.

Fig. S7. Molar magnetization (*M*) vs. magnetic field (*H*) at 1.9, 3.0, and 5.0 K. for 1 (left) and 2 (right). Insets are the *M* vs H/T plots at the same temperature values.

Fig. S8. Magnetic hysteresis loops at 1.9 K for 1 (left) and 2 (right) respectively.

Fig. S9. Frequency-dependent in-phase (χ') plots for complex 1 (a; 1.9–11 K; b; 12–21 K; c; 22–30 K) where the solid lines represent fitting of the experimental data at different temperatures using the generalized Debye functions.

range of 1–30 K.

Fig. S11. Temperature- (a and b) and frequency- (c and d) dependent in-phase (χ') and out-phase (χ'') plots for complex **2**.

$T(\mathbf{K})$	$\chi_{\rm S}$ (cm ³ mol ⁻¹)	$\chi_{\rm T}$ (cm ³ mol ⁻¹)	τ (s)	α
1.9	0.244302E+01	0.237250E+02	0.407292E-01	0.452653
2.2	0.230710E+01	0.219275E+02	0.300442E-01	0.451899
2.5	0.215060E+01	0.201494E+02	0.236667E-01	0.455965
3.0	0.193824E+01	0.176420E+02	0.178974E-01	0.463755
3.5	0.177603E+01	0.155958E+02	0.143137E-01	0.470324
4.0	0.166856E+01	0.138381E+02	0.117908E-01	0.474905
5.0	0.151163E+01	0.112150E+02	0.822111E-02	0.478405
6.0	0.141882E+01	0.931003E+01	0.569513E-02	0.473999
7.0	0.137936E+01	0.790958E+01	0.394733E-02	0.465300
8.0	0.138592E+01	0.684161E+01	0.278597E-02	0.451078
9.0	0.136839E+01	0.602635E+01	0.196012E-02	0.440453
10	0.134842E+01	0.537597E+01	0.135701E-02	0.433796
11	0.128974E+01	0.486046E+01	0.906202E-03	0.436270

 Table S4 Relaxation fitting parameters for 1 from 1.9–11 K under a zero applied dc field.

Table S5. Relaxation fitting parameters for Cole-Cole plots of complex 1 from 12–20 K under zero applied dc-field using the sum of two modified Debye model.³

Т	$\chi_{ m S, tot}$	$\Delta \chi_1$	$\Delta \chi_2$	$ au_1$ (s)	α_1	$ au_{2}\left(\mathrm{s} ight)$	α_2
(K)							
12	1.42510	2.40066	0.516387	0.391390E-03	0.318525	0.719803E-02	0.0153567
13	1.44414	2.08292	0.478638	0.277929E-03	0.312141	0.576194E-02	0.0213190
14	1.33835	1.97086	0.412387	0.178970E-03	0.352765	0.444365E-02	0.0120980
15	1.43628	1.63171	0.410770	0.147122E-03	0.337643	0.357631E-02	0.0229492
16	1.35527	1.53223	0.374984	0.986820E-04	0.369387	0.277951E-02	0.0244597
17	1.47811	1.20463	0.380564	0.945778E-04	0.322669	0.225593E-02	0.0315500
18	1.38198	1.16456	0.346569	0.657789E-04	0.354753	0.178916E-02	0.0173057
19	1.54859	8.59057	0.331244	0.817678E-04	0.308199	0.146326E-02	0.0225898
20	1.61308	6.79801	0.307738	0.914746E-04	0.276907	0.122509E-02	0.0277862

References

- 1. B. S. Jensen, Acta Chem. Scand., 1959, 13, 1668-1670.
- (a) Sheldrick, G. M., Acta Crystallogr. Sect. A 2015, 71, 3-8. (b) Sheldrick, G. M., Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8. (c) D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. Eur. J., 2005, 11, 1479-1494.
- 3. Y.-N. Guo, G.-F. Xu, Y. Guo and J. Tang, Dalton Trans., 2011, 40, 9953-9963.