Supplementary Information

Fabrication of Mixed Matrix Membranes with Regulated MOF Fillers via Incorporating Guest Molecules for Optimizing Light Hydrocarbons Separation Performance

Yang Feng^{b, ‡}, LiTing Yu^{a, ‡}, Kai Zhang^b, Weidong Fan^a, Lili Fan^{a, *}, Zixi Kang^{a, *}, Daofeng Sun^a

^aSchool of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China. ^bCollege of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China.

Contents

1. Characterizations of PIM-1	.1
2. Characterizations of fillers	.3
3. Characterizations and performance of membranes	.6

1. Characterizations of PIM-1

Fig. S1. PXRD patterns of PIM-1.

Fig. S2. N_2 adsorption/desorption isotherms of PIM-1 at 77 K.

Fig. S3. FTIR spectrum of PIM-1.

Fig. S4. TGA of PIM-1 under a nitrogen atmosphere.

2. Characterizations of fillers

Fig. S5. The partial enlarged view of PXRD patterns for pristine and optimized (a) **MIL-101**, (b) **MIL-101-SO₃H** and (c) **UiO-66-SO₃H** series powder.

Filler	BET(m ² /g)	
MIL-101	2458	
PMA@MIL-101(1:1)	1263	
PMA@MIL-101(1:2)	1480	
PMA@MIL-101(1:3)	1911	
MIL-101-SO ₃ H	593	
MIL-101-SO ₃ Ag	374	
UiO-66-SO ₃ H	482	
UiO-66-SO ₃ Ag	397	

Table S1. The surface area calculated based on the N_2 (77 K) adsorption-desorption experiment for MIL-101 and UiO-66 series

Fig. S6. TGA curves of pristine and optimized (a) MIL-101 and (b) MIL-101-SO₃H series powder.

Filler	Mo (wt%)	Ag(I) (wt%)
PMA@MIL-101(1:3)	10.06	-
PMA@MIL-101(1:2)	16.40	-
PMA@MIL-101(1:1)	18.23	-
MIL-101-SO ₃ Ag	-	0.63
UiO-66-SO ₃ Ag	-	1.13

Table S2. The content of Mo in PMA@MIL-101 series and Ag(I) in MIL-10was 1-SO₃Ag /UiO-66-SO₃Ag calculated by ICP results.

Fig. S7. (a) Comparison of the gas uptake of C_2H_4 and C_2H_6 for UiO-66-SO₃H at 273 K; (b) Comparison of the gas uptake of C_3H_6 and C_3H_8 for UiO-66-SO₃H at 273 K; (c) Comparison of the gas uptake of C_2H_4 and C_2H_6 for UiO-66-SO₃Ag at 273 K; (d) Comparison of the gas uptake of C_3H_6 and C_3H_8 for UiO-66-SO₃Ag at 273 K.

3. Characterizations and performance of membranes

Fig. S8. Comparison of the FTIR for pristine and optimized (a) MIL-101 and (b) MIL-101-SO₃H and (c) UiO-66-SO₃H membranes.

Fig. S9. The cross-sectional SEM images of PIM-1.

Fig. S10. TGA of MIL-101 and MIL-101-SO₃H series MMMs under a N_2 atmosphere.

Table S3 The thicknesses of the membranes measured based on the SEM image or

 with the digital micrometer

membrane	$T_{SEM}(\mu m)$	$T_{micrometer}(\mu m)$	
PIM-1	100±5	102±4	
MIL-101/PIM-1	78±3	75±2	
7.5% PMA@MIL-101(1:2)/PIM-1	62±1	65±1	
MIL-101-SO ₃ H/PIM-1	74±2	75±3	
MIL-101-SO3Ag/PIM-1	85±3	82±2	
UiO-66-SO ₃ H/PIM-1	76±2	73±2	
UiO-66-SO ₃ Ag/PIM-1	81±2	85±4	

	Permeability		Permeability C ₂ H ₄ /C ₂ H ₆		,	C3H6/C3H8
Membrane	(Barrer)			(Barrer)		
	C_2H_4	C_2H_6	selectivity	C ₃ H ₆	C ₃ H ₈	selectivity
PIM-1	1289±20	876±6	1.47±0.01	1562±18	698±7	2.23±0.03
7.5%MIL-101/PIM-1	1833±4	742±9	2.47±0.03	1421±35	348±13	4.08±0.06
7.5%PMA@MIL-101(1:2)/PIM- 1	1632±9	567±9	2.88±0.06	1480±93	248±19	5.96±0.14
10%PMA@MIL-101(1:2)/PIM-1	3166±78	1702±36	1.86±0.07	1640±11	418±5	3.92±0.02
MIL-101-SO ₃ H/PIM-1	2037±134	1329±143	1.53±0.06	1828±56	769±59	2.38±0.11
MIL-101-SO ₃ Ag/PIM-1	1456±28	420±13	3.47±0.16	1663±6	428 ±7	3.89±0.07
UiO-66-SO3H/PIM-1	2239±96	1566±66	1.43±0.07	3761±161	2149±200	1.75±0.10
UiO-66-SO3Ag/PIM-1	869±5	349±2	2.49±0.03	1233±50	281±17	4.39±0.08

Table S4 The permeability and the separation factor for all the membranes