Supplementary Information

Highly Reversible Aqueous Zinc-ion Battery by Chelating Agent Triethanolamine as Electrolyte Additive

Yunhui Lin ^{a,} *, Youzuo Hu ^a, Shu Zhang ^a, Ziqiang Xu ^a, Tingting Feng ^a, Haiping Zhou ^a, Mengqiang Wu ^{a, b,*}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

^b Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

* Corresponding author. E-mail: E-mail: yunhuilin@uestc.edu.cn, mwu@uestc.edu.cn

Figure S1. Linear sweep voltammetry (LSV) (a) and Linear polarization curves (b) of Zn foil in the electrolyte: electrolyte ZnSO₄+TEA and ZnSO₄.

Table S1

Electrolyte	ZnSO ₄	ZnSO ₄ +TEA
Ecorr (V)	-0.985	-0.975
Icorr (µA cm ⁻²)	530	150

Figure S2. Electrochemical impedance spectroscopy (EIS) of symmetric cells Zn||Zn fresh and after standing 6 hours with electrolyte $ZnSO_4$ +TEA and $ZnSO_4$.

Figure S3. EIS of symmetric cell Zn $\|Zn\|$ at different cycle with electrolyte of ZnSO₄+TEA

Figure S4. XRD of MnO2@CNT (a), FTIR of MnO2@CNT (b), and SEM images of MnO2@CNT with different magnification (c and d).

Figure S5. Charge/discharge curves of Zn $\|MnO2@CNT$ in electrolyte without TEA additive for different cycles at 0.5 A g⁻¹ (a) and 1.0 A g⁻¹ (b).

Figure S 6 Rate performance of Zn $\|MnO2@CNT$ in electrolyte without TEA additive from current density 0.1-2 A g⁻¹

Figure S7. GITT of Zn||MnO2@CNT in electrolyte without TEA additive

Figure S8. SEM image of cross-section of cell $Zn||MnO_2@CNT$ with TEA additive in electrolyte (a), EDS mapping (b) of elements Mn (c) and Zn (d).

Figure S9. SEM image of cross-section of cell $Zn \|MnO_2@CNT$ without TEA additive in electrolyte (a), EDS mapping (b) of elements Mn (c) and Zn (d).

Figure S10 Photograph of solutions: 2M ZnSO₄, 2M ZnSO₄+0.01 M TEA, and 2M ZnSO₄+0.02 M TEA.

Additive	Cthode	Electrolyte	Cycling stability	Ref.
SDS	Na2MnFe(CN) ₆	1 M ZnSO ₄ +	75% after 2000 cycles	[1]
		1 M Na ₂ SO ₄	at $0.8 \mathrm{A g^{-1}}$	
glucose	MnO ₂	1 M ZnSO ₄	80 % after	[2]
			1000 cycles at 3 A g^{-1}	
BIS-TRIS	MnO ₂	2 M ZnSO ₄	86% after 600 cycles	[3]
			at 0.5 A g ⁻¹	
TEHS	MnO ₂	0.5 M ZnSO4	83% after 200 cycles	[4]
			at 0.2 A g ⁻¹	
EDTA	MnO ₂ /graphite	2 M ZnSO ₄	81% after 1000 cycles	[5]
			at 1 A g ⁻¹	
EDTA	MnO2	2M ZnSO4	71% after 500 cycles	[6]
			at 1 mA cm^{-2}	
PAM	MnO ₂	2M ZnSO ₄ +	87% after 200 cycles	[7]
		0.1M MnSO ₄	at 0.2 A g ⁻¹	
			98% after 600 cycles	
			at 1 A g ⁻¹	
TEA	MnO ₂ /CNT	2M ZnSO ₄ +	78% after 2000 cycles	This work
		0.1M MnSO ₄	at 0.5 A g-1	

Table 2. Recent studies of electrolyte additive in aqueous zinc-ion battery.

Reference

- Hou, Z., et al., Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A, 2017. 5(2): p. 730-738.
- 2. Sun, P., et al., Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries: Achieved by a Low-Cost Glucose Additive. 2021.
- Luo, M., et al., *Dendrite-free zinc anode enabled by zinc-chelating chemistry*. Energy Storage Materials, 2021. 41: p. 515-521.
- Qian, L., et al., Cations Coordination-Regulated Reversibility Enhancement for Aqueous Zn-Ion Battery. Advanced Functional Materials, 2021. 31(40): p. 2105736.
- 5. Cao, J., et al., *Stabilizing zinc anode via a chelation and desolvation electrolyte additive*. Advanced Powder Materials, 2022. **1**(1): p. 100007.
- 6. Ou, Y., et al., *Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface.* **n**/**a**(n/a): p. e12167.
- Zhang, Q., et al., The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive. 2019. 58(44): p. 15841-15847.