Supplementary Information

Highly Reversible Aqueous Zinc-ion Battery by Chelating Agent Triethanolamine as Electrolyte Additive

Yunhui Lin a, *, Youzuo Hu a, Shu Zhang a, Ziqiang Xu a, Tingting Feng a, Haiping Zhou^a, Mengqiang Wu^{a, b,*}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China

^b Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China

* Corresponding author. E-mail: E-mail: yunhuilin@uestc.edu.cn, mwu@uestc.edu.cn

Figure S1. Linear sweep voltammetry (LSV) (a) and Linear polarization curves (b) of Zn foil in the electrolyte: electrolyte ZnSO4+TEA and ZnSO4.

Table S1

Figure S2. Electrochemical impedance spectroscopy (EIS) of symmetric cells Zn||Zn fresh and after standing 6 hours with electrolyte ZnSO4+TEA and ZnSO4.

Figure S3. EIS of symmetric cell Zn||Zn at different cycle with electrolyte of ZnSO4+TEA

Figure S4. XRD of MnO2@CNT (a), FTIR of MnO2@CNT (b), and SEM images of MnO2@CNT with different magnification (c and d).

Figure S5. Charge/discharge curves of Zn||MnO2@CNT in electrolyte without TEA additive for different cycles at $0.5 A g^{-1}$ (a) and $1.0 A g^{-1}$ (b).

Figure S 6 Rate performance of Zn||MnO2@CNT in electrolyte without TEA additive from current density 0.1 -2 A g^{-1} -1

Figure S7. GITT of $Zn||MnO₂(QCNT)$ in electrolyte without TEA additive

Figure S8. SEM image of cross-section of cell Zn||MnO₂@CNT with TEA additive in electrolyte (a), EDS mapping (b) of elements Mn (c) and Zn (d).

Figure S9. SEM image of cross-section of cell Zn||MnO₂@CNT without TEA additive in electrolyte (a), EDS mapping (b) of elements Mn (c) and Zn (d).

Figure S10 Photograph of solutions: 2M ZnSO₄, 2M ZnSO₄+0.01 M TEA, and 2M ZnSO4+0.02 M TEA.

Additive	Cthode	Electrolyte	Cycling stability	Ref.
SDS	Na2MnFe(CN) ₆	$1 M ZnSO4 +$	75% after 2000 cycles	$[1]$
		1 M Na ₂ SO ₄	at 0.8 A g^{-1}	
glucose	MnO ₂	1 M ZnSO ₄	80 % after	$[2]$
			1000 cycles at 3 A g^{-1}	
BIS-TRIS	MnO ₂	2 M ZnSO ₄	86% after 600 cycles	$[3]$
			at 0.5 A g^{-1}	
TEHS	MnO ₂	0.5 M ZnSO4	83% after 200 cycles	$[4]$
			at 0.2 A g^{-1}	
EDTA	MnO ₂ /graphite	2 M ZnSO ₄	81% after 1000 cycles	[5]
			at $1 \text{ A } \text{g}^{-1}$	
EDTA	MnO ₂	2M ZnSO4	71% after 500 cycles	[6]
			at 1 mA cm^{-2}	
PAM	MnO ₂	$2M ZnSO4 +$	87% after 200 cycles	$[7]$
		$0.1M$ MnSO ₄	at 0.2 A g^{-1}	
			98% after 600 cycles	
			at $1 \text{ A } g^{-1}$	
TEA	MnO ₂ /CNT	$2M ZnSO4 +$	78% after 2000 cycles	This work
		$0.1M$ MnSO ₄	at $0.5 A g-1$	

Table 2. Recent studies of electrolyte additive in aqueous zinc-ion battery.

Reference

- 1. Hou, Z., et al., *Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery.* Journal of Materials Chemistry A, 2017. **5**(2): p. 730-738.
- 2. Sun, P., et al., *Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries: Achieved by a Low-Cost Glucose Additive.* 2021.
- 3. Luo, M., et al., *Dendrite-free zinc anode enabled by zinc-chelating chemistry.* Energy Storage Materials, 2021. **41**: p. 515-521.
- 4. Qian, L., et al., *Cations Coordination-Regulated Reversibility Enhancement for Aqueous Zn-Ion Battery.* Advanced Functional Materials, 2021. **31**(40): p. 2105736.
- 5. Cao, J., et al., *Stabilizing zinc anode via a chelation and desolvation electrolyte additive.* Advanced Powder Materials, 2022. **1**(1): p. 100007.
- 6. Ou, Y., et al., *Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface.* $\mathbf{n}/\mathbf{a}(\mathbf{n}/\mathbf{a})$: p. e12167.
- 7. Zhang, Q., et al., *The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive.* 2019. **58**(44): p. 15841-15847.