Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supporting information

Structural phase transition and dielectric relaxation in an organic-inorganic hybrid compound: [(CH₃)₃NH]₄[Fe(SCN)₆]Cl

Ping Wang,^a Ming-Kun Chen,^b Yu-Qiao Tong,^a Shi-Qing Yin^a and Bo Huang^{*a}

^{*a*}Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

^bMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

Fig. S1 Infrared spectrum of 1 in KBr pellet recorded at room temperature.

Fig. S2 (a) The powder XRD patterns of **1** for the simulated at 120 and 213 K, experimental at room temperature and single crystals along different directions (020, 004 and 111). (b) The calculated BFDH morphology of **1** from Mercury. (c) The crystal picture of **1**. The *a*-, *b*- and *c*-axis were determined by XRD patterns and BFDH morphology.

Empirical formula	[(CH ₃) ₃ NH] ₄ [Fe(SCN) ₆]Cl			
Formula weight	680.26			
Phase type	LTP	НТР		
<i>Т </i> К	120(2)	213(2)		
Space group	Pbn2 ₁	Aba2		
a / Å	12.756(1)	12.806(2)		
<i>b /</i> Å	15.994(2)	16.361(3)		
c / Å	17.118(2)	17.171(3)		
V / Å ³	3492.3(5)	3597.4(11)		
Ζ	4	4		
D_{calcd} / g cm ⁻³	1.294	1.256		
μ / mm ⁻¹	0.892	0.866		
GOF	1.090	1.058		
$R_1, wR_2 [I > 2\sigma(I)]^a$	0.0760, 0.2068	0.0805, 0.2031		
R_1 , wR_2 (all data)	0.1095, 0.2344	0.1668,0.2632		
Flack parameter	-0.03(5)	-0.08(8)		

Table S1. Summary of crystal data and structural refinements of 1 at 120 and 213 K.

 $aR_1 = F_0 - F_c/F_0, wR_2 = \{w[(F_0)^2 - (F_c)^2]^2/w[(F_0)^2]^2\}^{1/2}$

Table S2. The geometry (Å, °) of hydrogen bonds for **1** at 120 and 213 K.

	D–H…A	D–H	Н…А	D…A	∠D–H…A
120 K	N7–H7…Cl1	0.980	2.210	3.157	162.17
	N8–H8…Cl1	0.980	2.226	3.142	155.04
	N9–H9…Cl1	0.980	2.146	3.113	168.98
213 K	N4–H4····Cl1 ^a	0.980	2.343	3.276	158.89
	N5–H5…Cl1 ^b	0.980	2.183	3.077	150.91
	N5'–H5'…Cl1 ^b	0.980	2.256	3.209	163.85

Symmetry codes: ^{*a*}) *x*-1/2, -*y*, *z*+1/2; ^{*b*}) *x*-1, *y*, *z*

Fig. S3 Thermogravimetric curve measured at a rate of 5 K min⁻¹ under N₂ atmosphere of **1**. It reveals that compound **1** was stable up to about 413 K.

Fig. S4 The baseline (left) and calculated ΔS (right) related to the phase transition as a function of temperature.

Table S3. The relaxation time (τ) and distribution parameter (α) at 175, 180, 185 and 190 K along the a-, b- and c-axis for **1**.

<i>a</i> -axis	Т	175 K	180 K	185 K	190 К
	$\tau \times 10^6 \text{ s}$	0.80	0.53	0.27	0.14
	α	0.003	0.003	0.004	0.004
<i>b</i> -axis	$\tau \times 10^6$ s	1.59	0.80	0.40	0.18
	α	0.007	0.007	0.009	0.008
c-axis	$\tau \times 10^6 \text{ s}$	8.85	2.27	0.94	0.32
	α	0.007	0.007	0.006	0.005