Supporting Information

Metal phosphonates as heterogeneous catalysts for highly efficient chemical fixation of CO_{2} under mild conditions

Yi-xin Wang, Jing-hui Zhou, Jun Xiong, Wan-qi Huang, Quan Li, Xue Min* and Ming Li *

School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing \& Finishing, Wuhan Textile University, Wuhan 430200, China, E-mail: xmin@wtu.edu.cn

Supplementary Index

Contents

S1. Methods
S2. Supplementary tables and figures
S3. The NMR spectrums

S1. Methods

1.1 General information

Powder X-ray diffraction (PXRD) was carried out with a MiniFlex 600 X-ray powder diffractometer equipped with a Cu sealed tube ($\lambda=1.54178 \AA$) at 40 kV and 40 mA . Inductively coupled plasma (ICP) analyses of Cu and elemental analyses of C, H, and N were conducted on a Perkin-Elmer Optima 3300DV spectrometer and a Perkin-Elmer 2400 elemental analyzer, respectively. Thermal gravimetric analysis (TGA) was conducted under an N_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ on a SDT 2960 Simultaneous DSC-TGA of TA instruments up to $800^{\circ} \mathrm{C}$. The infrared (IR) ${ }^{-1}$ spectra (diamond) were recorded on a Nicolet 7600 FT-IR spectrometer within the 4000-500 cm^{-1} region. ${ }^{1} \mathrm{H}$ NMR spectra were carried out in CDCl_{3} solvent on a Bruker 400 MHz spectrometer. The chemical shift is given in dimensionless δ values and is referenced relative to TMS in ${ }^{1} \mathrm{H}$ spectroscopy.

1.2 Cycloaddition of CO_{2} to epoxides

The yield was calculated from H NMR according to the following equation.

S2 Supplementary tables and figures

zoledronic acid
Scheme S1. Chemical structure of ligand
Table S1 Selected bond lengths (\AA) and angles (deg) for 1

Co1-O4	$2.083(4)$	Co1-O4A	$2.083(4)$
Co1-O2	$2.083(4)$	Co1-O2A	$2.083(4)$
Co1-O12	$2.132(5)$	Co1-O12A	$2.132(5)$
Co2-O6B	$2.021(4)$	Co2-O7C	$2.186(4)$
Co2-O3C	$2.119(5)$	Co2-O3	$2.078(5)$
Co2-O5C	$2.150(4)$	Co2-O9	$2.099(6)$
O4-Co1-O4A	$180.00(19)$	O4A-Co1-O12A	$87.21(18)$
O41-Co1-O12	$92.79(18)$	O4-Co1-O12A	$92.79(18)$

O4-Co1-O12	$87.21(18)$	O2-Co1-O4	$91.34(17)$
O2A-Co1-O4A	$91.34(17)$	O2-Co1-O4A	$88.66(17)$
O2A-Co1-O4	$88.66(17)$	O2A-Co1-O2	180.0
O2A-Co1-O12	$89.33(18)$	O2-Co1-O12	$90.67(18)$
O2A-Co1-O12A	$90.67(18)$	O2-Co1-O12A	$89.33(18)$
O12-Co1-O12A	180.0	O6B-Co2-O7C	$94.02(17)$
O6B-Co2-O33	$177.39(17)$	O6B-Co2-O3	$96.89(18)$
O6B-Co2-O5C	$95.31(17)$	O6B-Co2-O9	$94.1(3)$
O3C-Co2-O7C	$83.55(17)$	O3-Co2-O7C	$167.26(17)$
O3-Co2-O3C	$85.41(18)$	O3-Co2-O5C	$91.93(18)$
O3C-Co2-O5C	$83.34(18)$	O3-Co2-O9	$94.3(3)$
O5C-Co2-O7C	$80.50(16)$	O9-Co2-O7C	$91.4(2)$
O9-Co2-O3C	$86.9(3)$	O9-Co2-O5C	$168.0(2)$

${ }^{\text {a }}$ Symmetry code A: 1-x, 1-y, 2-z; B: -1+x, y, z; C: 1-x, $-y, 2-z$

Table S2 Selected bond lengths (\AA) and angles (deg) for 2

Cd2-05A	2.210(3)	Cd1-07	2.260(3)
Cd2-O5	2.210(3)	Cd1-04B	2.352(3)
Cd2-09	2.363(4)	Cd1-O4	2.331(3)
Cd2-09A	2.363(4)	Cd1-O6C	2.295(3)
Cd2-08A	2.293(3)	Cd1-O3D	2.289(3)
Cd2-08	2.293(3)	Cd1-N1E	2.264(4)
O5A-Cd2-O5	180.0	07-Cd1-04B	163.57(11)
05-Cd2-09A	90.10(11)	O7-Cd1-04	86.01(11)
O5ACd2-09	90.10(11)	07-Cd1-06C	82.54(10)
05A-Cd2-09A	89.90(11)	07-Cd1-O3D	101.74(11)
O5-Cd2-09	89.90(11)	O7-Cd1-N1E	89.68(12)
O5A-Cd2-08	90.02(11)	04-Cd1-O4B	83.88(10)
O5-Cd2-O8	89.98(11)	O6C-Cd1-O4B	82.84(10)
05-Cd2-08A	90.02(11)	O6C-Cd1-O4	79.02(10)
05A-Cd2-08A	89.98(11)	O3D-Cd1-04B	92.39(11)
09-Cd2-09A	180.0	O3D-Cd1-O4	97.33(10)
08A-Cd2-09A	92.65(15)	O3D-Cd1-O6C	174.24(11)
08A-Cd2-09	87.35(15)	N1E-Cd1-O4B	99.48(12)
O8-Cd2-09A	87.35(15)	N1E-Cd1-O4	174.38(11)

O8-Cd2-O9	$92.65(15)$	N1E-Cd1-O6C	$96.85(12)$
O8-Cd2-O8A	180.0	N1E-Cd1-O3D	$87.08(12)$
aSymmetry code A:1-x,1-y,-z; B:2-x,1-y,-1-z; C:1+x,+y,+z; D:1-x,1-y,-1-z; E:+x,1+y,+z			

Figure S1 SEM diagram of compound 1 before (a; inset a: one crystal of compound 1 at the 50um scale) and after (b) grinding and after catalytic reaction (c); SEM diagram of compound 2 before (d) and after (e) grinding and after catalytic reaction (f).

Figure S2 PXRD patterns of compound 1.

Figure S3 PXRD patterns of compound 2.

Figure S4 TGA curve of compound 1.

Figure S5 TGA curve of compound 2.

Figure S6 High-resolution XPS spectra of compound 1 in the Co $2 p$ region.

Figure $\mathbf{S 7}$ Reaction temperature that affect the cycloaddition of SO and CO_{2}.

Figure S8 Reaction time that affect the cycloaddition of SO and CO_{2}.

Figure S9 Infrared spectra of compound 2.

Table S3 Compound 2 catalytic of cycloaddition of CO_{2} to styrene epoxide ${ }^{\text {a }}$

Entry	Catalyst	Co-catalyst	Substrate	Time(h)	Conversion(\%) $^{\text {b }}$
1	0.05	none	SO	12	4.3
2	none	0.3	SO	12	17.9
3	0.05	0.3	SO	12	97.5
4	0.05^{c}	0.3	SO	12	52.2
5	0.025	0.15	SO	12	79.2
6	0.05	0.3	BGE	12	92.5

aReaction conditions: epoxide $=10 \mathrm{mmol}$ (SO, styrene epoxide; BGE, butyl glycidyl ether), compound 2 (0.05 mmol), and $\operatorname{TBAB}(0.3 \mathrm{mmol})$ under 1atm $\mathrm{CO}_{2}, 100^{\circ} \mathrm{C}$. betermined by GC. ${ }^{\text {cReuse1. }}$

Table S4 Comparative catalytic performance of 1 with others previously reported Co-MOFs catalysts for cycloaddition of epoxides with CO_{2}.

NO.	catalyst Co based MOFs	Co-catalyst	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure (MPa)	Time (h)	Yield $(\%)$	Ref.
1	Co-MOF-74(M)	-	100	2	4	96	32 a
2	ZIF-67	-	120	1	6	87	32 b
3	Co/ZIF-8	-	120	0.7	8	96.8	32 c
4	TPPCoCl	TBAI	120	1.8	12	24.1	32 d
5	Co-MOF-184	TBAB	80	0.1	6	72	32 e
6	Co(XN)(HCOO)	TBAB	90	0.1	12	99	32 f
7	Co(TCPB)	TBAB	80	0.1	9	80.8	32 g

8	Co(BDC)(L)	TBAB	40	0.1	12	99	32 h
9	Co(OBA)(L')	TBAB	60	0.1	24	99	32 i
10	Co $\left(\mu_{3}-\mathrm{L}^{\prime \prime}\right)$	TBAB	50	0.1	36	94.3	32 j
11	Co(L'")	TBAB	RT	0.1	8	91.7	32 k
12	Compound 1	TBAB	100	0.1	24	97.4	This work

S3. The NMR spectrums

Figure S9 The 1H NMR results of Catalytic Styrene oxide cycloaddition with CO_{2} using compound 1 as catalyst under the optimized reaction conditions mentioned in main body.

