Supporting information

Study on the influence conditions of luminescence properties of ionic

[Cu(N^N)(P^P)]⁺ complexes: ligands, counteranions and weak

interactions

Zi-Xi Li,^{†a} Zhen-Zhou Sun,^{†a} Guo Wang,^a Wei Yang,^b Hong-Liang Han,^a Yu-Ping Yang,^c Zhong-Feng Li,^a Lixiong Dai,^{*d,e} Yi-shan Yao^{*f} and Qiong-Hua Jin^{*a,g}

^oDepartment of Chemistry, Capital Normal University, Beijing 100048, China. E-mail: jingh@cnu.edu.cn

^bFaculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, P. R. China.

^cSchool of Science, Minzu University of China, Beijing 100081, China.

^dWenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China, email: <u>dailx@ucas.ac.cn</u> ^eOujiang Laboratory, Wenzhou, Zhejiang 325000, China

^fState Key Laboratory of Tocicology and Medical Countermeasures, Beijing Institute of pharmacology and Toxicology, No. 27 Taiping Road, Haidian District, Beijing, 100850, P. R. China.

^gState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

‡Zi-Xi Li and Zhen-Zhou Sun contributed equally to this work.

+Electronic Supplementary Information (ESI) available: crystal structure information, spectra date and computation details. CCDC: 2091103-2091105, 2091107-2091108, 2174893-2174925.

Caption of Figure

Fig. S1 The IR spectra for complex 1a. Fig. S2 The IR spectra for complex 2a. Fig. S3 The IR spectra for complex 3a. Fig. S4 The IR spectra for complex 4a. Fig. S5 The IR spectra for complex 1b. Fig. S6 The IR spectra for complex 2b. Fig. S7 The IR spectra for complex 3b. Fig. S8 The IR spectra for complex 4b. Fig. S9 The ¹H NMR spectra for complex 1a. Fig. S10 The ¹H NMR spectra for complex 2a. Fig. S11 The ¹H NMR spectra for complex 3a. Fig. S12 The ¹H NMR spectra for complex 4a. Fig. S13 The ¹H NMR spectra for complex 1b. Fig. S14 The ¹H NMR spectra for complex 2b. Fig. S15 The ¹H NMR spectra for complex 3b. Fig. S16 The ¹H NMR spectra for complex 4b. Fig. S17 The ³¹P NMR spectra for complex 1a. Fig. S18 The ³¹P NMR spectra for complex 2a. Fig. S19 The ³¹P NMR spectra for complex 3a. Fig. S20 The ³¹P NMR spectra for complex 4a.

Fig. S21 The ³¹P NMR spectra for complex 1b.

Fig. S22 The ³¹P NMR spectra for complex 2b.

Fig. S23 The ³¹P NMR spectra for complex 3b.

Fig. S24 The ³¹P NMR spectra for complex 4b.

Fig. S25 The PXRD patterns for complex **1a**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S26 The PXRD patterns for complex **2a**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S27 The PXRD patterns for complex **3a**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S28 The PXRD patterns for complex **4a**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S29 The PXRD patterns for complex **1b**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S30 The PXRD patterns for complex **2b**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S31 The PXRD patterns for complex **3b**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S32 The PXRD patterns for complex **4b**: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S33 The thermal stability curves for complexes 1a-4a and 1b-4b.

Caption of Table

Table. S1 Selected bond lengths (Å) and angles (°) for complexes 1a-4a and 1b-4b.

Table. S2 Intermolecular weak interactions for complexes 1a-4a and 1b-4b.

Table. S3 Fluorescence data for ligands phen, Dpq and bdppmapy.

Table. S4 Energy, oscillator strength and major contribution of the calculated transitions for complexes **3a** and **3b**.

Fig. S2 The IR spectra for complex 2a.

Fig. S4 The IR spectra for complex 4a.

Fig. S6 The IR spectra for complex 2b.

Fig. S8 The IR spectra for complex 4b.

Fig. S9 The ¹H NMR spectra for complex 1a.

Fig. S10 The ¹H NMR spectra for complex 2a.

Fig. S12 The ¹H NMR spectra for complex 4a.

Fig. S13 The ¹H NMR spectra for complex 1b.

Fig. S14 The ¹H NMR spectra for complex 2b.

Fig. S15 The ¹H NMR spectra for complex 3b.

Fig. S16 The ¹H NMR spectra for complex 4b.

Fig. S17 The ³¹P NMR spectra for complex 1a.

Fig. S18 The ³¹P NMR spectra for complex 2a.

Fig. S19 The ³¹P NMR spectra for complex 3a.

Fig. S20 The ³¹P NMR spectra for complex 4a.

Fig. S22 The ³¹P NMR spectra for complex 2b.

Fig. S23 The ³¹P NMR spectra for complex 3b.

Fig. S24 The ³¹P NMR spectra for complex 4b.

Fig. S25 The PXRD patterns for complex 1a: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S26 The PXRD patterns for complex 2a: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S27 The PXRD patterns for complex 3a: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S28 The PXRD patterns for complex 4a: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S29 The PXRD patterns for complex 1b: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S30 The PXRD patterns for complex 2b: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S31 The PXRD patterns for complex 3b: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S32 The PXRD patterns for complex 4b: simulated from single crystal data (Black) and single phase polycrystalline sample (Red).

Fig. S33 The thermal stability curves for complexes 1a-4a and 1b-4b.

fable. S1 Selected bond lengths	(Å)) and angles	(°)) for comp	lexes	1a-4a	and	1b-4	4b .
--	-----	--------------	-----	------------	-------	-------	-----	------	-------------

1a			
Cu(1)-P(1)	2.2396(8)	P(2)-Cu(1)-P(1)	104.61(3)
Cu(1)-P(2)	2.2258(7)	N(4)-Cu(1)-P(1)	116.04(6)
Cu(1)-N(4)	2.044(2)	N(4)-Cu(1)-P(2)	110.13(6)
Cu(1)-N(3)	2.065(2)	N(4)-Cu(1)-N(3)	81.70(9)
		N(3)-Cu(1)-P(1)	124.31(6)
		N(3)-Cu(1)-P(2)	118.31(6)
2a			
Cu(1)-P(2)	2.2396(6)	P(1)-Cu(1)-P(2)	104.71(2)
Cu(1)-P(1)	2.2271(6)	N(2)-Cu(1)-P(2)	125.66(6)
Cu(1)-N(2)	2.0611(19)	N(2)-Cu(1)-P(1)	117.72(5)
Cu(1)-N(1)	2.062(2)	N(2)-Cu(1)-N(1)	81.46(8)
		N(1)-Cu(1)-P(2)	115.68(6)
		N(1)-Cu(1)-P(1)	109.44(6)
3a			
Cu(1)-P(1)	2.2354(7)	P(2)-Cu(1)-P(1)	105.02(3)
Cu(1)-P(2)	2.2269(8)	N(1)-Cu(1)-P(1)	127.53(7)
Cu(1)-N(1)	2.050(2)	N(1)-Cu(1)-P(2)	116.88(7)
Cu(1)-N(2)	2.070(2)	N(1)-Cu(1)-N(2)	81.39(9)
		N(2)-Cu(1)-P(1)	114.73(7)
		N(2)-Cu(1)-P(2)	108.34(7)
4a			
Cu(1)-P(1)	2.2306(5)	P(1)-Cu(1)-P(2)	105.026(18)
Cu(1)-P(2)	2.2350(5)	N(1)-Cu(1)-P(1)	118.66(4)

Cu(1)-N(1)	2.0462(14)	N(1)-Cu(1)-P(2)	126.66(4)
Cu(1)-N(2)	2.0685(14)	N(1)-Cu(1)-N(2)	81.61(6)
		N(2)-Cu(1)-P(1)	107.71(4)
		N(2)-Cu(1)-P(2)	113.81(4)
1b			
Cu(1)-P(1)	2.2522(10)	P(2)-Cu(1)-P(1)	105.31(4)
Cu(1)-P(2)	2.2347(9)	N(3)-Cu(1)-P(1)	119.12(7)
Cu(1)-N(3)	2.064(2)	N(3)-Cu(1)-P(2)	124.58(8)
Cu(1)-N(4)	2.079(3)	N(3)-Cu(1)-N(4)	80.28(10)
		N(4)-Cu(1)-P(1)	107.49(8)
		N(4)-Cu(1)-P(2)	117.36(8)
2b			
Cu(1)-P(2)	2.2525(7)	P(2)-Cu(1)-P(1)	105.30(3)
Cu(1)-P(1)	2.2414(7)	N(1)-Cu(1)-P(2)	119.72(6)
Cu(1)-N(1)	2.066(2)	N(1)-Cu(1)-P(1)	124.31(6)
Cu(1)-N(2)	2.086(2)	N(1)-Cu(1)-N(2)	80.09(8)
		N(2)-Cu(1)-P(2)	108.11(6)
		N(2)-Cu(1)-P(1)	116.55(6)
3b			
Cu(1)-P(1)	2.2229(7)	P(1)-Cu(1)-P(2)	102.67(3)
Cu(1)-P(2)	2.2515(7)	N(2)-Cu(1)-P(1)	127.83(6)
Cu(1)-N(2)	2.078(2)	N(2)-Cu(1)-P(2)	115.91(6)
Cu(1)-N(1)	2.056(2)	N(1)-Cu(1)-P(1)	123.32(7)
		N(1)-Cu(1)-P(2)	104.01(7)
		N(1)-Cu(1)-N(2)	80.89(9)
4b			
Cu(1)-P(1)	2.2335(6)	P(1)-Cu(1)-P(2)	102.97(2)
Cu(1)-P(2)	2.2494(6)	N(1)-Cu(1)-P(1)	116.58(5)
Cu(1)-N(1)	2.0472(17)	N(1)-Cu(1)-P(2)	123.12(5)
Cu(1)-N(2)	2.0971(17)	N(1)-Cu(1)-N(2)	80.22(7)
		N(2)-Cu(1)-P(1)	123.39(5)
		N(2)-Cu(1)-P(2)	110.92(5)

Table.	S2	Intermo	lecular	weak	interac	tions	for	complexe	5 1a-4a	and	1b-	4b
--------	-----------	---------	---------	------	---------	-------	-----	----------	----------------	-----	-----	----

	Table. S2 Intermolecular weak interactions for complexes 1a-4a and 1b-4b.						
	$Cg(i)/C-H \rightarrow Cg(i)/(A)$	Cg	Symmetry code	$Cg(A)/H \cdots Cg(B) / Å$			
1a	Cg(10) Cg(10)	C35-C36-C39-C40-C38-C37	-x, -y, 1-z	3.9928			
	C7-H7A→Cg(3)	N2-C1-C2-C3-C4-C5	1-x, 1-y, -z	2.95			
	C24-H24→Cg(10)	C35-C36-C39-C40-C38-C37	-x, 1-y, 1-z	2.96			

	C34-H34→Cg(7)	C14-C15-C16-C17-C18-C19	-x, -y ,1-z	2.89
	C15-H15Cl1	/	/	2.77
	C29-H29Cl1	/	1-x, 1-y, 1-z	2.77
	C43-H43Cl1	/	/	2.68
2a	Cg(6)Cg(6)	C4-C5-C6-C7-C12-C11	1-x, 1-y, 1-z	3.9368
	C8-H8→Cg(10) ⁱ	C38-C39-C40-C41-C42-C43	1-x, 1-y, 1-z	2.93
	C18-H18A \rightarrow Cg(5) ⁱⁱ	N3-C13-C14-C15-C16-C17	-x, -y, 2-z.	2.99
	C1-H1···Br1 i	/	-x, 1-y, 1-z	2.84
	C28-H28A…Br1	/	x, -1+y, z	2.93
	C43H43-Br1		-x, 1-y, 1-z	2.92
3a	Cg(6)Cg(6)	C4-C5-C6-C7-C11-C12	1-x, 1-y, 1-z	3.8269
	C8-H8→Cg(10) ⁱ	C38-C39-C40-C41-C42-C43	1-x, 1-y, 1-z	2.92
	C14-H14 \rightarrow Cg(8)	C19-C20-C21-C22-C23-C24	1-x, -y, 1-z	2.97
	С1-Н1…I1	/	/	3.01
4a	Cg(6)···Cg(6)	C4-C5-C6-C7-C12-C11	1-x, -y, -z	3.5830
	C12-H12 \rightarrow Cg(9) ⁱ	C32-C33-C34-C35-C36-C37	1-x, -y, -z	2.93
	C18-H18A \rightarrow Cg(5) ⁱⁱ	N4-C13-C14-C15-C16-C17	-x, 1-y, 1-z	2.99
	C23-H23→Cg(8) ⁱⁱⁱ	C25-C26-C27-C28-C29-C30	1-x, 1-y, -z	2.83
	C3-H3N5	/	1-x, -y, -z	2.36
	C15-H15S1	/	1-x, 1-y, 1-z	2.78
	C22-H22S1	/	1-x, 1-y, -z	2.86
1b	O1-H1-Cl1	/	/	2.36
	O2-H2-Cl1	/	/	2.29
	O3-H3-Cl1	/	1-x, 1-y, 1-z	2.28
	C32-H32···O2	/	-1+x, y, z	2.33
	C33-H33…O1	/	-1+x, y, z	2.59
	C41-H41O3	/	1/2+x, 1/2-y, 1/2+z	2.60
2b	C42-H42…O46	/	/	2.56
	C43-H43…O47	/	/	2.26
	O3-H3A…Br1	/	-1/2+x, 3/2-y, 1/2+z	2.68
	O46-H46ABr1	/	/	2.55
	O47-H47Br1	/	/	2.56
3b	C13-H13 \rightarrow Cg(10) ⁱ	C34-C35-C36-C37-C38-C39	1-x, 2-y, 1-z	2.86
	C17-H17→Cg(8) ⁱⁱ	C21-C22-C23-C24-C25-C26	1+x, y, z	2.79
	C24-H24 \rightarrow Cg(6)	N6-C15-C16-C17-C18-C19	1-x, 2-y, -z	2.90
	C1-H1 I1 ⁱ	/	/	3.00
4b	Cg(7)···Cg(7)	C4-C5-C6-C7-C12-C11	1-x, 1-y, 1-z	3.9801
	C14-H14→Cg(10) ⁱ	C34-C35-C36-C37-C38-C39	1-x, 1-y, 1-z	2.89

C33-H33A…S1 ⁱ	/	x, -1+y, z	2.78
C42-H42N7 ⁱⁱ	/	1-x, 1-y, 1-z	2.60

Table. S3 Fluorescence data for ligands phen, Dpq and bdppmapy.						
ligands	$\lambda_{ex}/$ nm	λ_{em}/ nm				
phen	365	384				
Dpq	382	419				
bdppmapy	380	433				

Table.	S4 Energy,	oscillator	strength a	nd major	contribution	of the	calculated	transitions	for
--------	------------	------------	------------	----------	--------------	--------	------------	-------------	-----

	COI	mplexes 3a and 3b	
Excited state	Energy	Oscillator strength	Contribution %
[Cu(bdppmapy)(phen)] ⁺	5.1490 eV	0.1695	HOMO-17 -> LUMO 9.57
absorbtion	240.79 nm		HOMO-17 -> LUMO+2 3.48
			HOMO-9 -> LUMO+2 3.16
			HOMO-8 -> LUMO+2 46.32
			HOMO-5 -> LUMO+2 9.11
			HOMO-4 -> LUMO+2 3.96
[Cu(bdppmapy)(phen)] ⁺	2.7530 eV	0.0541	HOMO-5 -< LUMO 4.47
emission	450.36 nm		HOMO-3 -< LUMO 59.03
			HOMO-2 -< LUMO 23.19
			HOMO-1 -< LUMO+1 2.16
			HOMO -< LUMO+2 3.82
[Cu(bdppmapy)(Dpq)] ⁺	4.8957 eV	0.5546	HOMO-17 -> LUMO 9.29
absorbtion	253.25 nm		HOMO-17 -> LUMO+2 39.42
			HOMO-16 -> LUMO 12.81
			HOMO-16 -> LUMO+2 12.76
			HOMO-3 -> LUMO+4 2.88
[Cu(bdppmapy)(Dpq)] ⁺	2.6185 eV	0.0445	HOMO-3 -< LUMO 10.14
emission	473.49 nm		HOMO-2 -< LUMO 70.56
			HOMO-1 -< LUMO 12.08