Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022



Fig. S1. XRD pattern of AlO-NVO samples obtained by adjusitng the ratio of Al to V

(a) and  $NH_4V_4O_{10}-0$  (b).



Fig. S2. HRTEM images of AlO-NVO-0.28.



Fig. S3. The SEM images of AlO-NVO-0.56 (a-b), AlO-NVO-0.14 (c-d), and  $NH_4V_4O_{10}$ -0 (e-f).



Fig. S4. The first five CV curves at the scan rate of 0.1 mV s<sup>-1</sup> (a-c), the second and third CV curves (d) of AlO-NVO.0.28, AlO-NVO-0.14, AlO-NVO-0.56 and  $NH_4V_4O_{10}$ -0.



Fig. S5. The long-term cycling performance at the current density at 5.0 A  $g^{-1}$  of the AlO-NVO-0.28 with different load.



Fig. S6. The corresponding long-term cycling performance at the current density at  $10.0 \text{ A g}^{-1}$  of the AlO-NVO-0.28, AlO-NVO-0.14, AlO-NVO-0.56 and NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub>-0.



**Fig. S7.** Electrochemical impedance spectroscopy (EIS) patterns (a) initial state and (b) after 10 cycles of the four samples prepared by adjusting the amount of Al.



**Fig. S8.** The SEM images of the AlO-NVO-0.28 electrode after the 5 cycles (a-b), and their SEM images (c-d) EDS elemental mapping images (e-f) of the AlO/NVO-0.28 electrodes after the 500 cycles.

| Sample name  | Al: V(Actual dosage) | Al: V(ICP) | Al <sub>2</sub> O <sub>3</sub> proportion |
|--------------|----------------------|------------|-------------------------------------------|
| AlO-NVO-0.56 | 0.56:1               | 0.52:1     | 21.49%                                    |
| AlO-NVO-0.28 | 0.28:1               | 0.36:1     | 15.98%                                    |
| AlO-NVO-0.14 | 0.14:1               | 0.16:1     | 8.01%                                     |

Table S1. Elemental analysis of Al and V in three AlO-NVO samples.

Table S2. Comparison of electrochemical properties of AlO-NVO with previously

| Materials                                                                                     | High discharge capacity             | Capacity retention |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------|--------------------|--|
| Al <sub>2</sub> O <sub>3</sub> /(NH <sub>4</sub> ) <sub>2</sub> V <sub>4</sub> O <sub>9</sub> | 269 and 200 mAh $g^{-1}$ at 0.5 and | 86.5% after 3000   |  |

reported V-based cathode materials.

| (this work)                                                                                                                                                                                    | 5.0 A $g^{-1}$ , respectively                                          | cycles at 5.0 A $g^{-1}$                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|
| (NH <sub>4</sub> ) <sub>2</sub> V <sub>6</sub> O <sub>16</sub> ·1.5H <sub>2</sub> O [1]                                                                                                        | 284.6 and 172 mAh $g^{-1}$ at 3.0 and 5.0 A $g^{-1}$ , respectively    | 100% after 3000 cycles at 5.0 A $g^{-1}$  |
| $(NH_4)_x V_2 O_5 \cdot nH_2 O[2]$                                                                                                                                                             | 372 and 219 mAh $g^{-1}$ at 0.1 and 5.0 A $g^{-1}$ , respectively      | 80% after 2000 cycles at 5.0 A $g^{-1}$   |
| (NH <sub>4</sub> ) <sub>2</sub> V <sub>4</sub> O <sub>9</sub> ·0.5H <sub>2</sub> O [3]                                                                                                         | 200 and 177 mAh $g^{-1}$ at 0.5 and 5.0A $g^{-1}$ , respectively       | 93% after 1000 cycles at 1.0 A $g^{-1}$   |
| NH <sub>4</sub> V <sub>4</sub> O <sub>10</sub> [4]                                                                                                                                             | 355 and 280 mAh $g^{-1}$ at 0.3 and 2.0 A $g^{-1}$ , respectively      | 72% after 500 cycles at 3.0 A $g^{-1}$    |
| V2O5 [5]                                                                                                                                                                                       | 240 and 190 mAh $g^{-1}$ at 0.029 and 0.147 mA $g^{-1}$ , respectively | 97% after 100 cycles at 0.15 A $g^{-1}$   |
| VS <sub>4</sub> /CNTs [6]                                                                                                                                                                      | 265 and 182 mAh $g^{-1}$ at 0.25 and 7 mA $g^{-1}$ , respectively      | 93% after 1200 cycles at 5 A $g^{-1}$     |
| (NH <sub>4</sub> ) <sub>2</sub> Co <sub>2</sub> V <sub>10</sub> O <sub>28</sub> ·16H <sub>2</sub> O<br>/(NH <sub>4</sub> ) <sub>2</sub> V <sub>10</sub> O <sub>25</sub> ·8H <sub>2</sub> O [7] | 367.7 and 238.7 mAh $g^{-1}$ at 0.1 and 1.0 mA $g^{-1}$ , respectively | 82.1% after 1000 cycles at 1.0 A $g^{-1}$ |
| $NH_4V_3O_8/$<br>$Zn_3(OH)_2V_2O_7\cdot 2H_2O[8]$                                                                                                                                              | 332 and 132.6 mAh $g^{-1}$ at 0.1 and 0.147 mA $g^{-1},$ respectively  | 92% after 1000 cycles at 10.0 A $g^{-1}$  |

## **Reference:**

[1] X. Wang, B. Xi, Z. Feng, W. Chen, H. Li, Y. Jia, J. Feng, Y. Qian, S. Xiong, J. Mater. Chem. A, 2019, 7, 19130–19139.

[2] L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, C. Meng, Mater. *Today Energy*, 2020, 18, 100509.

[3] R. Wei, X. Wang, B. Xi, Z. Feng, H. Li, W. Chen, Y. Jia, J. Feng, S. Xiong, *ACS Appl. Energy Mater.*, 2020, **3**, 5343–5352.

[4] Y. Zheng, C. Tian, Y. Wu, L. Li, Y. Tao, L. Liang, G. Yu, J. Sun, S. Wu, F. Wang, Y. Pang , Z. Shen, Z. Pan, H. Chen, J. Wang, *Energy Storage Mater.*, 2022, 52, 664–674

[5] D. Batyrbekuly, B. Laïk, J.-P. Pereira-Ramos, Z. Bakenov, R. Baddour-Hadjean, *J. Energy Chem.*, 2021, **61**, 459–468.

[6] S. Gao, P. Ju, Z. Liu, L. Zhai, W. Liu, X. Zhang, Y. Zhou, C. Dong, F. Jiang, J. Sun, J. Energy Chem., 2022, 69, 356–362.

[7] W. Deng, Y. Xu, X. Zhang, C. Li, Y. Liu, K. Xiang, H. Chen, J. Alloys Compd., 2022, 903, 163824.

[8] L. Liu, Z. Lin, Q. Shi, J. Tang, Z. Li, Z. Tao, W. Huang, *Electrochem. Comm.*, 2022, 140, 107331.