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S1. General methods

Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku ULTIMA IV diffractometer 

equipped with Cu K in a 2 range of 5–40°. FT-IR spectra were recorded on a Nicolet NEXUS 

670 spectrophotometer using KBr pellets in the range of 500–4000 cm−1. Elemental analyses (C, H 

and N) were performed on an Elementar Vario ELIII analyzer. Inductively coupled plasma (ICP) 

experiment was conducted with a ThermoFisher ICAP7200HS emission spectrometer. TG analyses 

were carried out on a Mettler Toledo TGA/SDTA851 instrument under flowing N2 or air atmosphere 

with a heating rate of 5°C min-1. UV-visible absorption spectra were measured on a SHIMADZU 

UV-1800 spectrophotometer. Fluorescence spectra were recorded at room temperature with an 

Edinburgh FLS980 fluorescence spectrophotometer. The zeta potential was performed by JS94H 

microiontophoresis apparatus.

S2. X-ray Crystallography.

Diffraction intensity data for 1 was collected on a Bruker Apex II CCD area detector equipped with 

graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) at 293K. Empirical absorption 

correction was applied using the SADABS program. The structure was solved by direct methods 

and refined by the full-matrix least-squares based on F2 using SHELXTL. The non-hydrogen atoms 

were refined anisotropically, and the hydrogen atoms of the ligands were placed in calculated 

positions and refined using a riding model. Notably, the solvent molecules are highly disordered 

and could not be modeled correctly, so the residual electron densities resulting from them were 

removed by Solvent Mask in Olex2. A solvent mask was calculated and 2424 electrons were found 

in a volume of 17477Å3 in 1 void per unit cell. This is consistent with the presence of 1 [C2H8N]+, 

6[C2H9NO] and 24[H2O] per Formula Unit which account for 2412 electrons per unit cell.

S3. Explanation for the Alert A and B in the CheckCIF reports

Alert level B
PLAT241_ALERT_2_B High   'MainMol' Ueq as Compared to Neighbors of         O1 

Check

Explanation: This alert comes from the large amount of disorder in the structure and the poor quality 
of the crystal data. 

javascript:makeHelpWindow(%22PLAT241.html%22)


Table S1. Crystal data and structural refinements for 1.

Complex CP-1

Formula Zn7C116H163O76N7S6

Fw 3521.65
Crystal system trigonal 
Space group R c3̅

a (Å) 20.7129(8)                                   
b (Å) 20.7129(8)
c (Å) 77.627(3)
α 90

 90

 120
V (Å3) 28842.1(18)
Z 6
ρcalc (g m-3) 1.178
µ (mm-1) 2.224
F(000) 10616.064
reflections collected 104521
unique reflections 6539
Rint 0.0768
GOF 1.0035
R1 [I>2σ(I)] 0.0862
wR2 (all data) 0.3089

*The refinement results were obtained from Olex2 using Solvent Mask. 



Figure S1. 1H-NMR (DMSO-d6, 500 MHz) spectrum of H2L. δ: 4.13 (s, 3H, -OCH3), 7.87 (1H), 

7.93 (1Н), 8.2-8.5 (3H).

Figure S2. [Zn7(3-OH)3(COO)6] SBU of UoC-1 (a and b); [Mn8(4-O)3(COO)12] SBU of Mn-1 

(c).



Figure S3. 1H-NMR (D2O) spectrum of the NaCl solution after soaking 1. (DMA molecules also 
release from the framework owing to the partial collapse of 1 in water.) δ: 2.33 (-OC-CH3), 2.98(-
N-CH3), 3.14 (-CO-N-CH3), 3.30 (-CO-N-CH3).

Figure S4. Coordination environment of the ligand in UoC-1 (a), Mn-MOF (b) and 1 (c).



Figure S5. PXRD patterns showing the purity and stability of 1.

Figure S6. IR spectra of H2L ligand and complex 1.



Figure S7. TGA curves of the as-synthesized 1 (under N2 atmosphere) and the activated samples of 
1 (under air). The evacuated sample of 1 was obtained by solvent exchange with EtOH for three 
days, during which time the solvent was changed every 12 hours, then dried under vacuum at 180℃ 
for 12 hours.

Figure S8. Molecular structures of the organic dye compounds.



Figure S9. Photographs of crystal samples of 1 and dye@1.

Figure S10. Zeta potential of 1 in water. 





Figure S11. IR spectra of 1, dyes and dye@1. 

Figure S12. XRD patterns of crystal samples of 1 before and after dye adsorption. 



dyes Fitting linear equations R2 (%)
MB y = 0.2605 x + 0.03124 99.85
CV y = 0.1482 x + 0.01771 99.94
RhB y = 0.203 x + 0.028 99.85

Figure S13. The absorbed intensity (dots) of MB, CV and RhB at different concentrations (mg/L). 

The solid lines are the best linear fit.

Table S1. Equations for adsorption amounts and dye removal rate

Introduction Equations Comment

Adsorption amounts 𝑄𝑡 =
(𝐶0 ‒ 𝐶𝑡)𝑉

𝑚

Where m (g) presents the weight of the 
adsorbent; C0 (mgL-1) is the initial dye 
concentration and Ct (mgL-1) is the dye 
concentration at time t; V (L) denotes the 
volume of dye solution.

Dye removal rate (η, 
%)  

 𝜂 =  
𝐶0 ‒ 𝐶𝑡

𝐶0
 × 100%

Table S2. Adsorption kinetics model.

Introduction Kinetic model Comment

Pseudo first-order 
kinetics model

𝑙𝑛(𝑄𝑒 ‒ 𝑄𝑡) = 𝑙𝑛𝑄𝑒 ‒ 𝑘1𝑡
Where Qt and Qe (mg·g-1) are the adsorption 
capacity at time t and equilibrium; and k1 
(min-1) is the pseudo-first-order rate 
constant.

Pseudo second-order 
kinetics model 

𝑡
𝑄𝑡

=
1

𝑘2𝑄2
𝑒

+
𝑡

𝑄𝑒
Where k2 (g·mg-1·min-1) is the pseudo-
second-order rate constant.



Figure S14. Plots of pseudo-first-order kinetics for the adsorption of MB, CV and RhB on 1 

(Experiment Conditions: T = 25℃, V = 10 mL, C0 = 10 mg·L−1, m = 10 mg)

Figure S15. Adsorption isotherms of MB, CV and RhB on 1 at room temperature.



Table S3. Adsorption isotherm model

Introduction Isotherm model Comment

Langmuir isotherm 
𝐶𝑒

𝑄𝑒
=

𝐶𝑒

𝑄𝑚𝑎𝑥
+

1
𝐾𝐿𝑞𝑚𝑎𝑥

Where Ce (mg L1) is the equilibrium 

concentration of adsorbate; Qe and Qm (mg 

L1) represent the equilibrium adsorption 

capacity and maximum adsorption 

capacity, respectively; KL (mg L1) named 

the Langmuir constant;

Freundlich isotherm 𝑙𝑛𝑄𝑒 = 𝑙𝑛𝐾𝐹 +
1
𝑛

(𝑙𝑛𝐶𝑒)

Where KF is the Freundlich constant 

related to the adsorption capacity; n is the 

adsorption strength constant under the 

Frundlich model.

Figure S16. Reusability of 1 for the adsorption of MB. 



Figure S17. The fluorescent emission spectra of EtOH solution of RhB with different 
concentrations.

Figure S18. The fluorescent emission spectra of RhB@1 in EtOH with different amounts of RhB.



Figure S19. Molecule structures of the antibiotics selected in this work.

Figure S20. Fluorescence spectra of RhB@1 dispersed into different antibiotics in EtOH solutions 
(700 M).



Figure S21. Color changes of 1 suspension upon RhB adsorption (a. 1 dispersed in EtOH; b. 
RhB@1 dispersed in EtOH).

Figure S22. (a) Luminescent stability of suspension of RhB@1 in EtOH within 80 minutes; (b) 
Response times of RhB@ 1 towards NFT and NZF.



Figure S23. Emission spectra of 1 upon incremental addition of NFT (a) and NFZ (b); The 
Stern−Volume plots of 1 for NFT (c) and NFZ (d). Inset: Linear relationship of the SV plots at low 
concentration.

Figure S24. Fluorescence intensities of 1 in five recyclable experiments for sensing NFT (a) and 
NFZ (c) in EtOH.



Figure S25. X-ray diffraction of RhB@1 before and after sensing NFT/NZF.

Figure S26. Spectral overlap between the absorption spectra of various antibiotics and the excitation 
spectrum of RhB@1.



Table S4. The values of KSV and LOD of RhB@ 1, CP 1 and other reported MOF sensors towards 
NFT/NFZ.

MOFs NFs KSV (× 104 M-1) LOD (μM) solvent Ref.

RhB@1 NFT 2.96 0.89 EtOH This work

RhB@1 NFZ 2.08 0.98 EtOH This work

CP 1 NFT 1.21 2.18 EtOH This work

CP 1 NFZ 0.63 3.24 EtOH This work

RhB@Zn-1 NFT 5.61 0.73 EtOH 1

RhB@Zn-1 NFZ 4.73 0.86 EtOH 1

[Zn2(Py2TTz)2(BDC)2]·2DMF·0.5H2O
NFZ 1.726 0.91 H2O 2

[Eu2(BCA)3(H2O)(DMF)3]·0.5DMF·H2O NFT 1.6 0.16 H2O 3

[Eu2(BCA)3(H2O)(DMF)3]·0.5DMF·H2O NFZ 2.2 0.21 H2O 3

Zr6O4(OH)8(H2O)4(CTTA)8/3 NFT 3.8 --- H2O 4

{[Tb(TATMA)(H2O)·2H2O}n NFT 3.35 --- H2O 5

{[Tb(TATMA)(H2O)·2H2O}n NFZ 3.00 --- H2O 5

[Cd7(SO4)6(tppe)2] 2DMF·2H2O NFZ 0.174 --- H2O 6

{[NH2(CH3)2]4[Zn3(HBDPO)2(SO4)2]}n NFT 4.5 --- DMF 7
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