Supporting Information

A new multifunctional anionic 3D Zn(II)-MOF based on heptanuclear clusters: selective adsorption of organic dyes and dual-emitting sensor for nitroantibiotics

Yan-Fang Du^a, Xi-Xi Wang^a, Ai-Ling Cheng^{*a}, Yuan-Yuan Wang^a, En-Qing Gaob

^a College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200240, People's Republic of China. ^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of

China.

Contents

S1. General methods

Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku ULTIMA IV diffractometer equipped with Cu K α in a 2 θ range of 5–40°. FT-IR spectra were recorded on a Nicolet NEXUS 670 spectrophotometer using KBr pellets in the range of 500–4000 cm−1 . Elemental analyses (C, H and N) were performed on an Elementar Vario ELIII analyzer. Inductively coupled plasma (ICP) experiment was conducted with a ThermoFisher ICAP7200HS emission spectrometer. TG analyses were carried out on a Mettler Toledo TGA/SDTA851 instrument under flowing N_2 or air atmosphere with a heating rate of 5°C min⁻¹. UV-visible absorption spectra were measured on a SHIMADZU UV-1800 spectrophotometer. Fluorescence spectra were recorded at room temperature with an Edinburgh FLS980 fluorescence spectrophotometer. The zeta potential was performed by JS94H microiontophoresis apparatus.

S2. X-ray Crystallography.

Diffraction intensity data for **1** was collected on a Bruker Apex II CCD area detector equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 293K. Empirical absorption correction was applied using the SADABS program. The structure was solved by direct methods and refined by the full-matrix least-squares based on F ² using SHELXTL. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms of the ligands were placed in calculated positions and refined using a riding model. Notably, the solvent molecules are highly disordered and could not be modeled correctly, so the residual electron densities resulting from them were removed by Solvent Mask in Olex2. A solvent mask was calculated and 2424 electrons were found in a volume of 17477Å3 in 1 void per unit cell. This is consistent with the presence of 1 [C2H8N]⁺, $6[C_2H_9NO]$ and $24[H_2O]$ per Formula Unit which account for 2412 electrons per unit cell.

S3. Explanation for the Alert A and B in the CheckCIF reports

Alert level B

[PLAT241_ALERT_2_B](javascript:makeHelpWindow(%22PLAT241.html%22)) High 'MainMol' Ueq as Compared to Neighbors of 01 Check

Explanation: This alert comes from the large amount of disorder in the structure and the poor quality of the crystal data.

Complex	$CP-1$
Formula	$Zn_7C_{116}H_{163}O_{76}N_7S_6$
Fw	3521.65
Crystal system	trigonal
Space group	R^3c
a(A)	20.7129(8)
b(A)	20.7129(8)
c(A)	77.627(3)
α	90
β	90
γ	120
$V(\AA^3)$	28842.1(18)
Z	6
ρ_{calc} (g m ⁻³)	1.178
μ (mm ⁻¹)	2.224
F(000)	10616.064
reflections collected	104521
unique reflections	6539
R_{int}	0.0768
GOF	1.0035
R_1 [$\geq 2\sigma(I)$]	0.0862
wR_2 (all data)	0.3089

Table S1. Crystal data and structural refinements for **1**.

*The refinement results were obtained from Olex2 using Solvent Mask.

Figure S1. ¹H-NMR (DMSO-d6, 500 MHz) spectrum of H2L. δ: 4.13 (s, 3H, -OCH3), 7.87 (1H), 7.93 (1Н), 8.2-8.5 (3H).

Figure S2. $[Zn_7(\mu_3-OH)_3(COO)_6]$ SBU of UoC-1 (a and b); $[Mn_8(\mu_4-O)_3(COO)_{12}]$ SBU of Mn-1 (c).

Figure S3. ¹H-NMR (D2O) spectrum of the NaCl solution after soaking **1**. (DMA molecules also release from the framework owing to the partial collapse of **1** in water.) δ: 2.33 (-OC-CH3), 2.98(- N-CH3), 3.14 (-CO-N-CH3), 3.30 (-CO-N-CH3).

Figure S4. Coordination environment of the ligand in UoC-1 (a), Mn-MOF (b) and **1** (c).

Figure S5. PXRD patterns showing the purity and stability of **1**.

Figure S6. IR spectra of H2L ligand and complex **1**.

Figure S7. TGA curves of the as-synthesized 1 (under N_2 atmosphere) and the activated samples of **1** (under air). The evacuated sample of **1** was obtained by solvent exchange with EtOH for three days, during which time the solvent was changed every 12 hours, then dried under vacuum at 180℃ for 12 hours.

Figure S8. Molecular structures of the organic dye compounds.

crystals of RhB@1

smashed RhV@1

Figure S9. Photographs of crystal samples of **1** and dye@**1**.

Figure S10. Zeta potential of **1** in water.

Figure S11. IR spectra of **1**, dyes and dye@**1**.

Figure S12. XRD patterns of crystal samples of **1** before and after dye adsorption.

dyes	Fitting linear equations	R^2 (%)
MB	$y = 0.2605 x + 0.03124$	99.85
CV	$y = 0.1482 x + 0.01771$	99.94
RhR	$y = 0.203 x + 0.028$	99.85

Figure S13. The absorbed intensity (dots) of MB, CV and RhB at different concentrations (mg/L). The solid lines are the best linear fit.

Figure S14. Plots of pseudo-first-order kinetics for the adsorption of MB, CV and RhB on **1** (Experiment Conditions: $T = 25$ °C, $V = 10$ mL, $C_0 = 10$ mg·L⁻¹, $m = 10$ mg)

Figure S15. Adsorption isotherms of MB, CV and RhB on **1** at room temperature.

Introduction	Isotherm model	Comment			
Langmuir isotherm	$\frac{C_e}{Q_e} = \frac{C_e}{Q_{max}} + \frac{1}{K_l q_{max}}$	Where C_e (mg L^{-1}) is the equilibrium			
		concentration of adsorbate; Q_e and Q_m (mg			
		L^{-1}) represent the equilibrium adsorption			
		capacity and maximum adsorption			
		capacity, respectively; K_L (mg L^{-1}) named			
		the Langmuir constant;			
Freundlich isotherm	$lnQ_e = lnK_F + \frac{1}{n}(lnC_e)$	Where K_F is the Freundlich constant			
		related to the adsorption capacity; n is the			
		adsorption strength constant under the			
		Frundlich model.			

Table S3. Adsorption isotherm model

Figure S16. Reusability of **1** for the adsorption of MB.

Figure S17. The fluorescent emission spectra of EtOH solution of RhB with different concentrations.

Figure S18. The fluorescent emission spectra of RhB@**1** in EtOH with different amounts of RhB.

Figure S19. Molecule structures of the antibiotics selected in this work.

Figure S20. Fluorescence spectra of RhB@**1** dispersed into different antibiotics in EtOH solutions $(700 \mu M).$

Figure S21. Color changes of **1** suspension upon RhB adsorption (a. **1** dispersed in EtOH; b. **RhB@1** dispersed in EtOH).

Figure S22. (a) Luminescent stability of suspension of **RhB@1** in EtOH within 80 minutes; (b) Response times of **RhB@ 1** towards NFT and NZF.

Figure S23. Emission spectra of **1** upon incremental addition of NFT (a) and NFZ (b); The Stern−Volume plots of **1** for NFT (c) and NFZ (d). Inset: Linear relationship of the SV plots at low concentration.

Figure S24. Fluorescence intensities of **1** in five recyclable experiments for sensing NFT (a) and NFZ (c) in EtOH.

Figure S25. X-ray diffraction of RhB@**1** before and after sensing NFT/NZF.

Figure S26. Spectral overlap between the absorption spectra of various antibiotics and the excitation spectrum of **RhB@1**.

MOFs	${\rm NFs}$	K_{SV} (× 10 ⁴ M ⁻¹)	$LOD(\mu M)$	solvent	Ref.
RhB@1	NFT	2.96	0.89	EtOH	This work
RhB@1	NFZ	2.08	0.98	EtOH	This work
CP ₁	NFT	1.21	2.18	EtOH	This work
CP ₁	NFZ	0.63	3.24	EtOH	This work
$RhB@Zn-1$	NFT	5.61	0.73	EtOH	$\mathbf{1}$
$RhB@Zn-1$	NFZ	4.73	0.86	EtOH	$\mathbf{1}$
$[Zn_2(Py_2TTz)_2(BDC)_2]$ 2DMF 0.5H ₂ O	NFZ	1.726	0.91	H ₂ O	$\overline{2}$
$[Eu2(BCA)3(H2O)(DMF)3] \cdot 0.5DMF \cdot H2O$	NFT	1.6	0.16	H ₂ O	\mathfrak{Z}
$[Eu2(BCA)3(H2O)(DMF)3] \cdot 0.5DMF \cdot H2O$	NFZ	2.2	0.21	H ₂ O	\mathfrak{Z}
$Zr_6O_4(OH)_8(H_2O)_4(CTTA)_{8/3}$	NFT	3.8	$---$	H ₂ O	4
${[\text{Tb}(\text{TATMA})(\text{H}_2\text{O})\cdot2\text{H}_2\text{O}]_n}$	NFT	3.35	---	H ₂ O	5
${[\text{Tb}(\text{TATMA})(\text{H}_2\text{O})\cdot2\text{H}_2\text{O}]_n}$	NFZ	3.00		H_2O	5
$[Cd7(SO4)6(type)2] 2DMF·2H2O$	NFZ	0.174	---	H ₂ O	6
${[\text{NH}_2(\text{CH}_3)_2]_4[\text{Zn}_3(\text{HBDPO})_2(\text{SO}_4)_2]}_n$	NFT	4.5		DMF	$\boldsymbol{7}$

Table S4. The values of K_{SV} and LOD of $\text{RhB}(Q)$ 1, CP 1 and other reported MOF sensors towards NFT/NFZ.

References:

- 1. Q.-Q. Tu, L.-L. Ren, A.-L. Cheng and E.-Q. Gao, *CrystEngComm*, 2021, **23**, 629-637.
- 2. Z.-W. Zhai, S.-H. Yang, M. Cao, L.-K. Li, C.-X. Du and S.-Q. Zang, *Cryst. Growth Des.*, 2018, **18**, 7173-7182.
- 3. F. Zhang, H. Yao, T. S. Chu, G. W. Zhang, Y. Wang and Y. Y. Yang, *Chem.-Eur. J.*, 2017, **23**, 10293-10300.
- 4. B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li and H.-C. Zhou, *J. Am. Chem. Soc.*, 2016, **138**, 6204-6216.
- 5. Q.-Q. Zhu, H. He, Y. Yan, J. Yuan, D.-Q. Lu, D.-Y. Zhang, F. Sun and G. Zhu, *Inorg. Chem.*, 2019, **58**, 7746-7753.
- 6. Y. Zhao, Y.-J. Wang, N. Wang, P. Zheng, H.-R. Fu, M.-L. Han, L.-F. Ma and L.-Y. Wang, *Inorg. Chem.*, 2019, **58**, 12700-12706.
- 7. H. He, Q.-Q. Zhu, F. Sun and G. Zhu, *Cryst. Growth Des.*, 2018, **18**, 5573-5581.