Supporting Information

A new multifunctional anionic 3D Zn(II)-MOF based on heptanuclear clusters: selective adsorption of organic dyes and dual-emitting sensor for nitroantibiotics

Yan-Fang Du^a, Xi-Xi Wang^a, Ai-Ling Cheng^{*a}, Yuan-Yuan Wang^a, En-Qing Gao^b

^a College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200240, People's Republic of China.

^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China.

Contents

S1. General methods
S2. X-ray Crystallography
S3. Explanation for the Alert A and B in the CheckCIF reports4
Table S1. Crystal data and structural refinements for 1
Figure S1. ¹ H-NMR (DMSO-d6, 500 MHz) spectrum of H ₂ L. δ: 4.13 (s, 3H, -OCH3), 7.87 (1H),
7.93 (1H), 8.2-8.5 (3H)
Figure S2. IR spectra of H ₂ L ligand and complex 1
Figure S3. [Zn ₇ (μ ₃ -OH) ₃ (COO) ₆] SBU of UoC-1 (a and b); [Mn ₈ (μ ₄ -O) ₃ (COO) ₁₂] SBU of Mn-1 (c).
Figure S4. Coordination environment of the ligand in UoC-1 (a), Mn-MOF (b) and 1 (c)7
Figure S5. ¹ H-NMR (D ₂ O) spectrum of the NaCl solution after soaking 1. (DMA molecules also
release from the framework owing to the partial collapse of 1 in water.) δ : 2.33 (-OC-CH ₃), 2.98(-
N-CH ₃), 3.14 (-CO-N-CH ₃), 3.30 (-CO-N-CH ₃)
Figure S6. PXRD patterns showing the purity and stability of 18
Figure S7. TGA curves of the as-synthesized 1 (under N_2 atmosphere) and the activated samples of
1 (under air). The evacuated sample of 1 was obtained by solvent exchange with EtOH for three
days, during which time the solvent was changed every 12 hours, then dried under vacuum at 180°C
for 12 hours9
Figure S8. Molecular structures of the organic dye compounds
Figure S9. Photographs of crystal samples of 1 and dye@110
Figure S10. Zeta potential of 1 in water
Figure S11. IR spectra of 1, dyes and dye@112
Figure S12. XRD patterns of crystal samples of 1 before and after dye adsorption12
Figure S13. The absorbed intensity (dots) of MB, CV and RhB at different concentrations (mg/L).
The solid lines are the best linear fit
Table S1. Equations for adsorption amounts and dye removal rate
Table S2. Adsorption kinetics model. 13
Figure S14. Plots of pseudo-first-order kinetics for the adsorption of MB, CV and RhB on 1
(Experiment Conditions: $T = 25^{\circ}$ C, $V = 10 \text{ mL}$, $C_0 = 10 \text{ mg} \cdot \text{L}^{-1}$, $m = 10 \text{ mg}$)14
Figure S15. Adsorption isotherms of MB, CV and RhB on 1 at room temperature14
Table S3. Adsorption isotherm model
Figure S16. Reusability of 1 for the adsorption of MB15
Figure S17. The fluorescent emission spectra of EtOH solution of RhB with different
concentrations

Figure S18. The fluorescent emission spectra of $RhB@1$ in EtOH with different amounts of RhB .
Figure S19. Molecule structures of the antibiotics selected in this work
Figure S20. Fluorescence spectra of RhB@1 dispersed into different antibiotics in EtOH solutions
(700 μM)17
Figure S21. Color changes of 1 suspension upon RhB adsorption (a. 1 dispersed in EtOH; b.
RhB@1 dispersed in EtOH)18
Figure S22. (a) Luminescent stability of suspension of RhB@1 in EtOH within 80 minutes; (b)
Response times of RhB @ 1 towards NFT and NZF18
Figure S23. Emission spectra of 1 upon incremental addition of NFT (a) and NFZ (b); The
Stern-Volume plots of 1 for NFT (c) and NFZ (d). Inset: Linear relationship of the SV plots at low
concentration
Figure S24. Fluorescence intensities of 1 in five recyclable experiments for sensing NFT (a) and
NFZ (c) in EtOH
Figure S25. X-ray diffraction of RhB@1 before and after sensing NFT/NZF20
Figure S26. Spectral overlap between the absorption spectra of various antibiotics and the excitation
spectrum of RhB@1 20
Table S4. The values of K_{SV} and LOD of RhB (a) 1, CP 1 and other reported MOF sensors towards
NFT/NFZ
References:

S1. General methods

Powder X-ray diffraction (PXRD) patterns were collected on a Rigaku ULTIMA IV diffractometer equipped with Cu K α in a 2 θ range of 5–40°. FT-IR spectra were recorded on a Nicolet NEXUS 670 spectrophotometer using KBr pellets in the range of 500–4000 cm⁻¹. Elemental analyses (C, H and N) were performed on an Elementar Vario ELIII analyzer. Inductively coupled plasma (ICP) experiment was conducted with a ThermoFisher ICAP7200HS emission spectrometer. TG analyses were carried out on a Mettler Toledo TGA/SDTA851 instrument under flowing N₂ or air atmosphere with a heating rate of 5°C min⁻¹. UV-visible absorption spectra were measured on a SHIMADZU UV-1800 spectrophotometer. Fluorescence spectra were recorded at room temperature with an Edinburgh FLS980 fluorescence spectrophotometer. The zeta potential was performed by JS94H microiontophoresis apparatus.

S2. X-ray Crystallography.

Diffraction intensity data for **1** was collected on a Bruker Apex II CCD area detector equipped with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 293K. Empirical absorption correction was applied using the SADABS program. The structure was solved by direct methods and refined by the full-matrix least-squares based on F² using SHELXTL. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms of the ligands were placed in calculated positions and refined using a riding model. Notably, the solvent molecules are highly disordered and could not be modeled correctly, so the residual electron densities resulting from them were removed by Solvent Mask in Olex2. A solvent mask was calculated and 2424 electrons were found in a volume of 17477Å3 in 1 void per unit cell. This is consistent with the presence of 1 [C2H8N]⁺, 6[C₂H₉NO] and 24[H₂O] per Formula Unit which account for 2412 electrons per unit cell.

S3. Explanation for the Alert A and B in the CheckCIF reports

Alert level B

<u>PLAT241 ALERT 2 B</u> High 'MainMol' Ueq as Compared to Neighbors of O1 Check

Explanation: This alert comes from the large amount of disorder in the structure and the poor quality of the crystal data.

Complex	CP-1
Formula	Zn ₇ C ₁₁₆ H ₁₆₃ O ₇₆ N ₇ S ₆
Fw	3521.65
Crystal system	trigonal
Space group	$R^{3}c$
<i>a</i> (Å)	20.7129(8)
<i>b</i> (Å)	20.7129(8)
<i>c</i> (Å)	77.627(3)
α	90
β	90
γ	120
$V(Å^3)$	28842.1(18)
Ζ	6
$\rho_{calc} (\mathrm{g}\mathrm{m}^{-3})$	1.178
$\mu ({\rm mm}^{-1})$	2.224
<i>F</i> (000)	10616.064
reflections collected	104521
unique reflections	6539
R _{int}	0.0768
GOF	1.0035
$R_1 [I \ge 2\sigma(I)]$	0.0862
wR_2 (all data)	0.3089

Table S1. Crystal data and structural refinements for 1.

*The refinement results were obtained from Olex2 using Solvent Mask.

Figure S1. ¹H-NMR (DMSO-d6, 500 MHz) spectrum of H₂L. δ: 4.13 (s, 3H, -OCH3), 7.87 (1H), 7.93 (1H), 8.2-8.5 (3H).

Figure S2. [Zn₇(μ₃-OH)₃(COO)₆] SBU of UoC-1 (a and b); [Mn₈(μ₄-O)₃(COO)₁₂] SBU of Mn-1 (c).

Figure S3. ¹H-NMR (D₂O) spectrum of the NaCl solution after soaking 1. (DMA molecules also release from the framework owing to the partial collapse of 1 in water.) δ : 2.33 (-OC-CH₃), 2.98(-N-CH₃), 3.14 (-CO-N-CH₃), 3.30 (-CO-N-CH₃).

Figure S4. Coordination environment of the ligand in UoC-1 (a), Mn-MOF (b) and 1 (c).

Figure S5. PXRD patterns showing the purity and stability of 1.

Figure S6. IR spectra of H₂L ligand and complex 1.

Figure S7. TGA curves of the as-synthesized 1 (under N_2 atmosphere) and the activated samples of 1 (under air). The evacuated sample of 1 was obtained by solvent exchange with EtOH for three days, during which time the solvent was changed every 12 hours, then dried under vacuum at 180°C for 12 hours.

Figure S8. Molecular structures of the organic dye compounds.

crystals of RhB@1

smashed RhV@1

Figure S9. Photographs of crystal samples of 1 and dye@1.

Figure S10. Zeta potential of 1 in water.

Figure S11. IR spectra of 1, dyes and dye@1.

Figure S12. XRD patterns of crystal samples of 1 before and after dye adsorption.

dyes	Fitting linear equations	R ² (%)
MB	y = 0.2605 x + 0.03124	99.85
CV	y = 0.1482 x + 0.01771	99.94
RhB	y = 0.203 x + 0.028	99.85

Figure S13. The absorbed intensity (dots) of MB, CV and RhB at different concentrations (mg/L). The solid lines are the best linear fit.

Introduction	Equations	Comment		
Adsorption amounts	$Q_t = \frac{(C_0 - C_t)V}{m}$	Where <i>m</i> (g) presents the weight of the adsorbent; C_0 (mg·L ⁻¹) is the initial dye concentration and C_t (mg·L ⁻¹) is the dye concentration at time <i>t</i> ; <i>V</i> (L) denotes the volume of dye solution.		
Dye removal rate (η, %)	$\eta = \frac{C_0 - C_t}{C_0} \times 100\%$			

Table S2. Adsorption kinetics	mode	el.
-------------------------------	------	-----

Introduction	Kinetic model	Comment
Pseudo first-order kinetics model	$ln(Q_e - Q_t) = lnQ_e - k_1 t$	Where Q_t and Q_e (mg·g ⁻¹) are the adsorption capacity at time t and equilibrium; and k_1 (min ⁻¹) is the pseudo-first-order rate
Pseudo second-order kinetics model	$\frac{t}{Q_t} = \frac{1}{k_2 Q_e^2} + \frac{t}{Q_e}$	constant. Where k_2 (g·mg ⁻¹ ·min ⁻¹) is the pseudo-second-order rate constant.

Figure S14. Plots of pseudo-first-order kinetics for the adsorption of MB, CV and RhB on 1 (Experiment Conditions: $T = 25^{\circ}$ C, V = 10 mL, $C_0 = 10 \text{ mg} \cdot \text{L}^{-1}$, m = 10 mg)

Figure S15. Adsorption isotherms of MB, CV and RhB on 1 at room temperature.

Introduction	Isotherm model	Comment			
	$\frac{C_e}{Q_e} = \frac{C_e}{Q_{max}} + \frac{1}{K_L q_{max}}$	Where $C_{\rm e}$ (mg L ⁻¹) is the equilibrium			
		concentration of adsorbate; $Q_{\rm e}$ and $Q_{\rm m}$ (mg			
Langmuir isotherm $\frac{C_e}{Q_e}$ =		L ⁻¹) represent the equilibrium adsorption			
		capacity and maximum adsorption			
		capacity, respectively; $K_{\rm L}$ (mg L ⁻¹) named			
		the Langmuir constant;			
Freundlich isotherm	$lnQ_e = lnK_F + \frac{1}{n}(lnC_e)$	Where $K_{\rm F}$ is the Freundlich constant			
		related to the adsorption capacity; n is the			
		adsorption strength constant under the			
		Frundlich model.			

Table S3. Adsorption isotherm model

Figure S16. Reusability of 1 for the adsorption of MB.

Figure S17. The fluorescent emission spectra of EtOH solution of RhB with different concentrations.

Figure S18. The fluorescent emission spectra of RhB@1 in EtOH with different amounts of RhB.

Figure S19. Molecule structures of the antibiotics selected in this work.

Figure S20. Fluorescence spectra of RhB@1 dispersed into different antibiotics in EtOH solutions (700 μ M).

Figure S21. Color changes of 1 suspension upon RhB adsorption (a. 1 dispersed in EtOH; b. RhB@1 dispersed in EtOH).

Figure S22. (a) Luminescent stability of suspension of RhB@1 in EtOH within 80 minutes; (b) Response times of RhB@ 1 towards NFT and NZF.

Figure S23. Emission spectra of **1** upon incremental addition of NFT (a) and NFZ (b); The Stern–Volume plots of **1** for NFT (c) and NFZ (d). Inset: Linear relationship of the SV plots at low concentration.

Figure S24. Fluorescence intensities of **1** in five recyclable experiments for sensing NFT (a) and NFZ (c) in EtOH.

Figure S25. X-ray diffraction of RhB@1 before and after sensing NFT/NZF.

Figure S26. Spectral overlap between the absorption spectra of various antibiotics and the excitation spectrum of RhB@1.

MOFs	NFs	$K_{ m SV} (imes 10^4 { m M}^{-1})$	LOD (µM)	solvent	Ref.
RhB@1	NFT	2.96	0.89	EtOH	This work
RhB@1	NFZ	2.08	0.98	EtOH	This work
CP 1	NFT	1.21	2.18	EtOH	This work
CP 1	NFZ	0.63	3.24	EtOH	This work
RhB@Zn-1	NFT	5.61	0.73	EtOH	1
RhB@Zn-1	NFZ	4.73	0.86	EtOH	1
$[Zn_2(Py_2TTz)_2(BDC)_2] \cdot 2DMF \cdot 0.5H_2O$	NFZ	1.726	0.91	H ₂ O	2
[Eu ₂ (BCA) ₃ (H ₂ O)(DMF) ₃]·0.5DMF·H ₂ O	NFT	1.6	0.16	H ₂ O	3
[Eu ₂ (BCA) ₃ (H ₂ O)(DMF) ₃]·0.5DMF·H ₂ O	NFZ	2.2	0.21	H ₂ O	3
Zr ₆ O ₄ (OH) ₈ (H ₂ O) ₄ (CTTA) _{8/3}	NFT	3.8		H ₂ O	4
${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$	NFT	3.35		H ₂ O	5
${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$	NFZ	3.00		H ₂ O	5
[Cd7(SO4)6(tppe)2] 2DMF·2H2O	NFZ	0.174		H ₂ O	6
${[NH_2(CH_3)_2]_4[Zn_3(HBDPO)_2(SO_4)_2]}_n$	NFT	4.5		DMF	7

Table S4. The values of K_{SV} and LOD of **RhB**@ 1, CP 1 and other reported MOF sensors towards NFT/NFZ.

References:

- 1. Q.-Q. Tu, L.-L. Ren, A.-L. Cheng and E.-Q. Gao, *CrystEngComm*, 2021, 23, 629-637.
- Z.-W. Zhai, S.-H. Yang, M. Cao, L.-K. Li, C.-X. Du and S.-Q. Zang, *Cryst. Growth Des.*, 2018, 18, 7173-7182.
- 3. F. Zhang, H. Yao, T. S. Chu, G. W. Zhang, Y. Wang and Y. Y. Yang, *Chem.-Eur. J.*, 2017, **23**, 10293-10300.
- B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li and H.-C. Zhou, J. Am. Chem. Soc., 2016, 138, 6204-6216.

- Q.-Q. Zhu, H. He, Y. Yan, J. Yuan, D.-Q. Lu, D.-Y. Zhang, F. Sun and G. Zhu, *Inorg. Chem.*, 2019, 58, 7746-7753.
- Y. Zhao, Y.-J. Wang, N. Wang, P. Zheng, H.-R. Fu, M.-L. Han, L.-F. Ma and L.-Y. Wang, *Inorg. Chem.*, 2019, 58, 12700-12706.
- 7. H. He, Q.-Q. Zhu, F. Sun and G. Zhu, Cryst. Growth Des., 2018, 18, 5573-5581.