Three Photochromic Materials based on POMs and Viologens for UV Probing, Visual Detection of Metal Ions and Amine Detecting

Xi Xu, Mengle Yang*, Qinghai Lu, Shuang Yu, Shufang Ma, Aixiang Tian, Jun Ying*

Table S1. Selected bond lengths (Å) and angles (°) of compounds 1–3.

Compound 1

Cu(1) - Cl(1)	2.290(5)	Cu(1) - N(4)	2.016(13)
$Cu(1) - Cl(1)^1$	2.660(4)	Cu(1) - N(7)	2.031(13)
$\operatorname{Cl}(1) - \operatorname{Cu}(1) - \operatorname{Cl}(1)^1$	88.38(15)	N(4) - Cu(1) - N(1)	87.2(5)
N(4) - Cu(1) - Cl(1)	175.5(4)	N(4) - Cu(1) - N(7)	92.8(5)
$N(4) - Cu(1) - Cl(1)^{1}$	95.3(4)	$N(7) - Cu(1) - Cl(1)^{1}$	97.3(4)

Symmetry codes: #1 1-X, 1-Y, 1-Z #2 1-X, 2-Y, 1-Z #3 1-X, 3-Y, -Z #4 2-X, 1-Y, 1-Z

Compound 2

Mo(4) - Mo(1)	3.2052(7)	C(3) - C(6)	1.482(8)
Mo(4) – O(3)	1.687(4)	N(1) - C(1)	1.314(10)
Mo(3) - Mo(4) - Mo(1)	90.199(18)	C(8) - N(2) - C(10)	120.1(6)
O(3) - Mo(4) - O(13)	100.83(18)	C(10) - N(2) - C(11)	119.5(6)
O(8) - Mo(3) - Mo(4)	133.93(17)	C(4) - C(3) - C(2)	117.8(6)

Symmetry codes: #1 -X, -Y, 1-Z

Compound $\mathbf{3}$

Mo(11) – O(33)	1.790(6)	N(5) - C(42)	1.303(12)
Mo(2) – O(22)	2.129(6)	C(10) - C(11)	1.504(14)
O(35) – Mo(11) – O(33)	109.0(3)	N(5) - C(41) - C(40)	120.2(9)
O(2) - Mo(5) - Mo(8)	124.65(17)	C(7) - C(10) - C(9)	118.2(11)
O(17) – Mo(1) – O(15)	145.5(2)	N(1) – C(19) – C(18)	117.9 (12)

Symmetry codes: #1 -X, 3-Y, 3-Z #2 1-X, 3-Y, 4-Z #3 -X, 2-Y, 2-Z

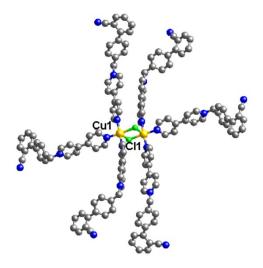


Fig. S1. The bi-nuclear Cu cluster constructed by six Cbybpy ligands of compound 1.

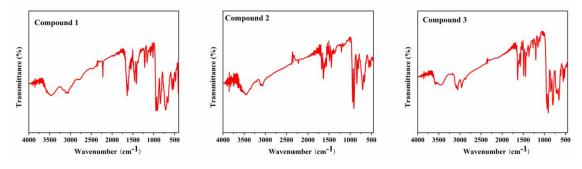


Fig. S2. The IR spectra of compounds 1–3.

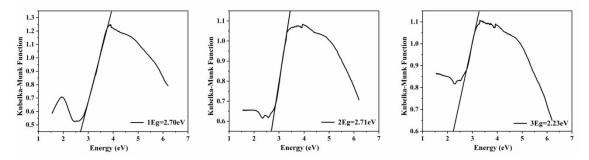


Fig. S3. The solid-state optical diffuse-reflectance spectra of compounds 1–3.

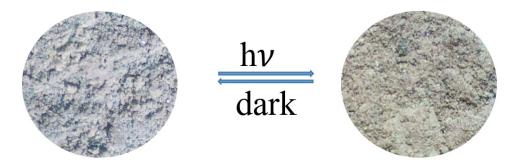


Fig. S4. Color change of compound 1 before and after photochromism.

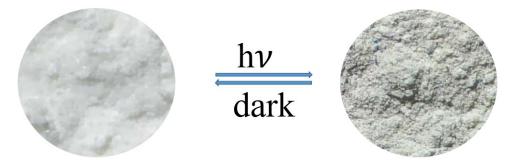


Fig. S5. Color change of compound 2 before and after photochromism.

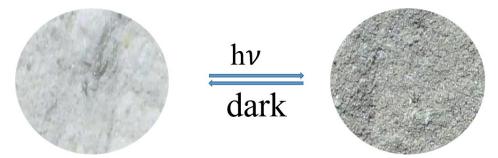


Fig. S6. Color change of compound 3 before and after photochromism.

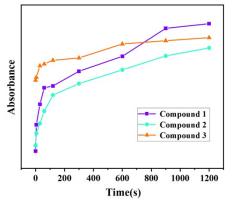
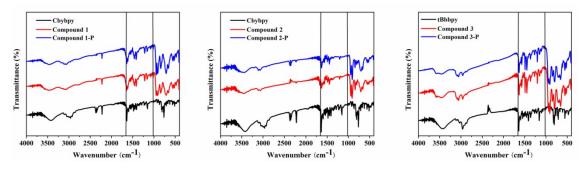
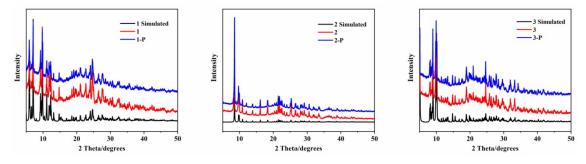




Fig. S7. The plots of absorption changes at 475 nm for 1, 505 nm for 2, 514 nm for 3 with irradiation time vs. UV irradiance.

Fig. S8. The IR spectra of Cbybpy, tBbbpy, compounds 1–3 (before irradiation) and compounds 1-P, 2-P, 3-P (after irradiation).

Fig. S9. The simulated and experimental PXRD patterns of **1–3** (before irradiation) and **1-**P, **2-**P, **3-**P (after irradiation).

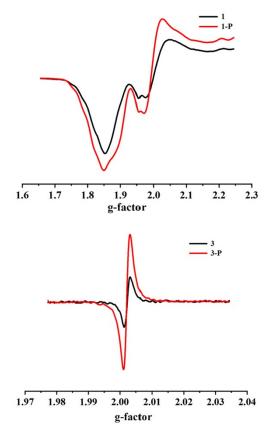


Fig. S10. EPR spectra of 1, 3 and 1-P, 3-P (before and after irradiation).

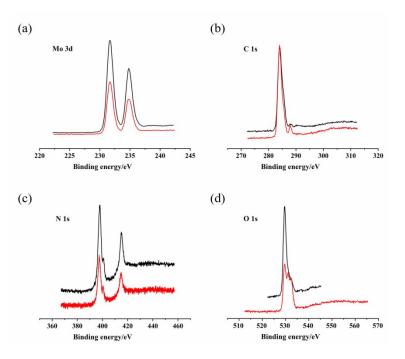


Fig. S11. XPS core-level spectra before (black line) and after (red line) irradiation of 1.

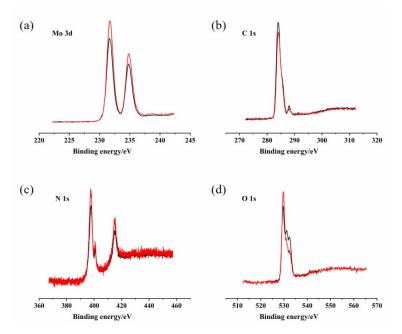


Fig. S12. XPS core-level spectra before (black line) and after (red line) irradiation of 2.

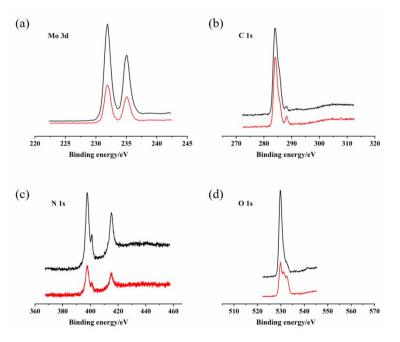
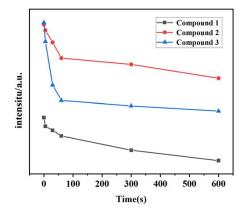



Fig. S13. XPS core-level spectra before (black line) and after (red line) irradiation of 3.

Fig. S14. The plots of fluorescence intensity changes at 400 nm for **1**, 397 nm for **2**, 398 nm for **3** with irradiation time vs. UV irradiance.

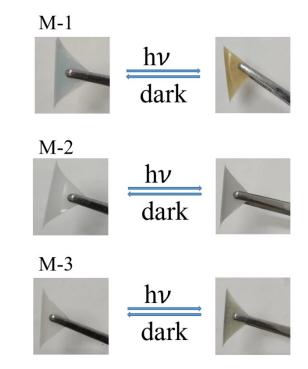
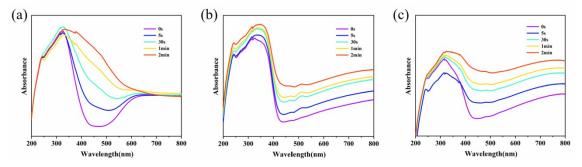



Fig. S15. Flexibility of M-1, M-2 and M-3 (before and after irradiation).

Fig. S16. UV-vis spectral changes of M-1, M-2 and M-3 (a-c) in the solid state upon UV (200–400 nm) and visible-light illumination (>400 nm) at room temperature in air.

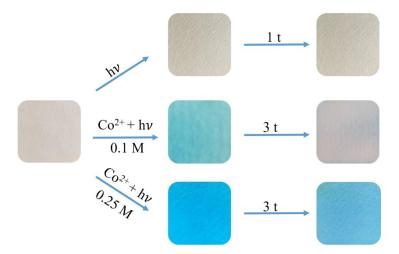


Fig. S17. Color change for visual detection of Co²⁺ by Z-2 (before and after irradiation).

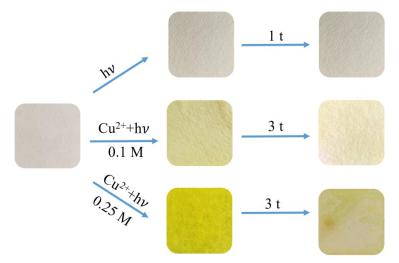


Fig. S18. Color change for visual detection of Cu²⁺ by Z-2 (before and after irradiation).

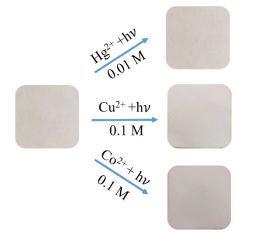
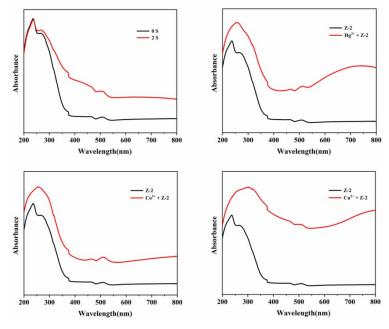
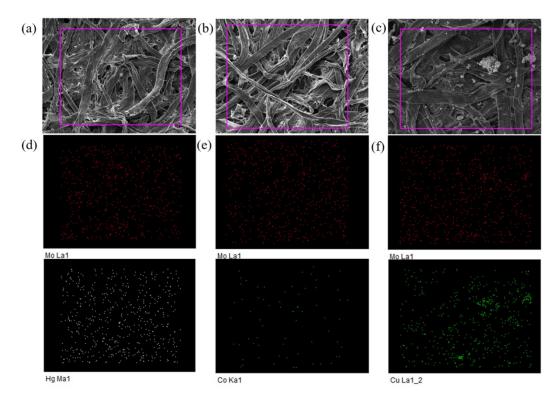




Fig. S19. Blank test paper immersed in solutions containing different ions and irradiated with color changes.

Fig. S20. UV-vis spectral changes of Z-2, Z-2(Hg²⁺), Z-2(Co²⁺) and Z-2(Cu²⁺) in the solid state upon UV (200–400 nm) and visible-light illumination (>400 nm) at room temperature in air.

Fig. S21. (a-c) Morphology and structures of Z-2(Hg²⁺), Z-2(Co²⁺) and Z-2(Cu²⁺) characterized by SEM. (d-f) EDS elemental mapping images of Z-2(Hg²⁺), Z-2(Co²⁺) and Z-2(Cu²⁺).



Fig. S22. Color change of 2 and 3 before and after detection of organic amine.

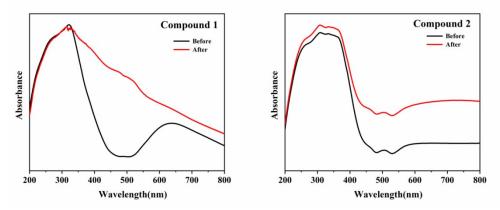


Fig. S23. UV/vis spectra of compounds 1 and 2 before and after exposure to NH₃ vapors.

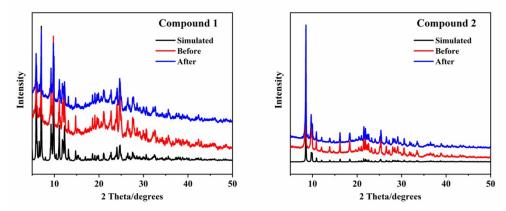


Fig. S24. The simulated and experimental PXRD patterns of 1 and 2 (before and after ammonia detection).

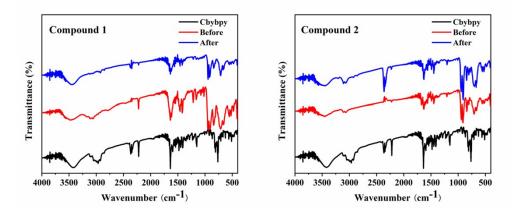


Fig. S25. The IR spectra of Cbybpy, compounds 1 and 2 (after ammonia detection).