A Structural Topotactic Transformation Synthetic Route for β -NaYF₄ Upconversion Nanocrystals from YF₃ at Room Temperature

Baiqi Shao, Mei Yang, Fangfu Ye

Figure S1 Element mapping of (B) F, (C) Y, and (D) Na elements image of the product at 6 h.

Figure S2 SEM images of the products obtained at (A) 18 h, (C) 24 h, (D) 32 h, and (B) corresponding TEM image of the product obtained at 18 h.

Figure S3 XRD patterns of final products synthesized under different conditions: (A) 160 °C for 48 h with YF₃: NaF=1: 2 (mole ratio), (B) 160 °C for 48 h with YF₃: NaF=1: 3, (C) 200 °C for 48 h with YF₃: NaF=1: 3, and (D) 160 °C for 48 h with YF₃: NaF=1: 6.

Figure S4 TEM (A) and HRTEM (B) images of the products synthesized at 160 °C for 48 h with YF₃: NaF=1: 2 or 1: 3. It can be seen that the chain-like nanostructure is composed of oriented nanorods. The distinct lattice fringes with d spacing of 0.34 nm can be indexed to YF₃ (020) lattice plane, which is agree with that of the YF₃ nanospindle precursor.

Figure S5 TEM image and corresponding XRD pattern of the YF_3 precursor obtained with reaction time for 15 min.

Figure S6 XRD patterns of the β -NaYF₄ products synthesized using ultra small YF₃ nanoparticles under different conditions: (A) room temperature with YF₃: NaF=1: 6 (mole ratio), (B) 160 °C for 12 h with YF₃: NaF=1: 2 (mole ratio), (C) 160 °C for 12 h with YF₃: NaF=1: 4, and (D) 160 °C for 12 h with YF₃: NaF=1: 6.