Supplementary Information

An insight into the non-covalent interactions in the solid state structures of dinuclear cobalt(II) complexes with N,O-donor ligands: Application of the complexes in the fabrication of Schottky devices

Rabi Sankar Sarkar¹, Animesh Biswas^{2,3}, Partha Pratim Ray³*, Rosa M. Gomila⁴, Michael G. B.

Drew,⁵ Snehasis Banerjee,⁶ Antonio Frontera^{4*} and Shouvik Chattopadhyay^{1*}

¹Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata 700032, India. Email: <u>shouvik.chem@gmail.com</u>

²Department of Physics, Sreegopal Banerjee College, Hooghly 712148, West Bengal

³Department of Physics, Jadavpur University, Kolkata 700032, India. E-mail: partha@phys.jdvu.ac.in; Fax: +91 3324138917

⁴Department of Chemistry, Universitat de les IllesBalears, Crta de Valldemossa km 7.5, 07122 palma de Mallorca, Spain

⁵ School of Chemistry, The University of Reading, P.O. Box 224, Whiteknights, Reading RG6 6AD, UK.

⁶ Department of Higher Education, (University Branch) Government of West Bengal, Bikash Bhavan, Salt Lake, Kolkata-91, INDIA

Correspondence: <u>toni.frontera@uib.es</u> (A.F.); <u>parthapray@yahoo.com</u> (P.P.R); <u>shouvik.chem@gmail.com</u> (S.C.).

Fig. S1. Perspective view of the sub-unit B of complex 1. Hydrogen atoms have been omitted for

clarity.

Fig. S2. Perspective view of the sub-unit C of complex 1. Hydrogen atoms have been omitted for

clarity.

Fig. S3. IR spectra of complexes 1(left) and 2 (right).

Fig. S4. UV-vis spectra of complexes 1 and 2.

Hirshfeld Surface analysis

Hirshfeld surfaces¹⁻³ and the fingerprint⁴⁻⁵(2D) plots were calculated using Crystal Explorer.⁶⁻⁷

Hirshfield surface analysis

The Hirshfeld surfaces of both complexes, mapped over d_{norm} (range -0.1 Å to 1.5 Å), have been shown in Figure 4. Red spots on these surfaces are indicative of the principal interactions (Figure **S5**) which include C···H/H···C, N···H/H···N and O···H/H···O (for **1**), C···H/H···C,O···H/H···O and S···H/H···S (for **2**) interactions. These interactions appear as distinct spikes in the 2D fingerprint plots (Figure **S6**).

Figure S5. Hirshfeld surfaces mapped with d_{norm} (left), shape index (middle) and curvedness (right) for complex 1 (top) and complex 2 (bottom)

Figure S6. Fingerprint plots: different contacts contributed to the total Hirshfeld surface area of complexes 1(top) and 2(bottom)

Table S1. Selected bond lengths (\AA) of complexes 1 and 2

		Complex – 1		
				Complex - 2
	Subunit A	Subunit B	Subunit C	-
Co(1)–O(1)	2.087(4)	2.086(4)	2.088(4)	2.111(2)
Co(1)–O(2)	2.103(4)	2.108(4)	2.101(4)	2.046(2)
Co(1)–O(5)	2.124(4)	2.123(3)	2.122(4)	2.118(2)
Co(1)–O(7)	2.141(4)	2.146(4)	2.135(4)	2.125(2)
Co(1)–N(1)	2.106(5)	2.119(4)	2.105(5)	2.100(2)

Co(1)–N(2)	2.113(5)	2.106(4)	2.109(5)	2.125(2)
Co(2)–O(1)	2.015(4)	2.018(4)	2.013(4)	2.023(2)
Co(2)–O(2)	2.048(4)	2.042(4)	2.040(4)	2.004(2)
Co(2)–O(3)	2.314(6)	2.319(6)	2.321(6)	2.518(2)
Co(2)–O(4)	2.350(5)	2.348(5)	2.347(5)	2.387(4)
Co(2)–O(6)	2.032(4)	2.025(4)	2.027(4)	2.030(2)
Co(2)–N(3)	1.997(6)	1.995(6)	1.998(6)	1.980(3)

Table S2. Selected bond angles (°) of complexes 1-2.

		Complex 2		
	Subunit A	Subunit B	Subunit C	-
O(1)-Co(1)-O(2)	80.33(16)	80.14(16)	79.94(16)	80.28(8)
O(1)-Co(1)-O(5)	92.74(15)	92.76(16)	92.90(16)	88.74(8)
O(1)-Co(1)-O(7)	89.77(19)	90.02(18)	89.2(2)	93.66(8)

O(1)-Co(1)-N(1)	91.81(17)	91.84(18)	92.10(18)	91.62(8)	
O(1)-Co(1)-N(2)	172.78(17)	172.89(19)	172.72(17)	172.03(9)	
O(2)–Co(1)–O(5)	90.47(15)	90.62(15)	90.38(15)	92.09(8)	
O(2)–Co(1)–O(7)	87.67(18)	87.6(2)	87.53(19)	90.97(8)	
O(2)–Co(1)–N(1)	172.12(18)	171.96(17)	172.00(18)	171.88(8)	
O(2)–Co(1)–N(2)	92.61(17)	92.87(17)	92.88(17)	91.93(9)	
O(5)–Co(1)–O(7)	176.6(2)	176.4(2)	176.8(2)	176.40(8)	
O(5)–Co(1)-N(1)	89.23(16)	89.19(16)	89.22(16)	87.15(9)	
O(5)-Co(1)-N(2)	85.75(17)	85.98(15)	85.85(17)	89.87(9)	
O(7)–Co(1)–N(1)	93.0(2)	93.1(2)	93.2(2)	90.12(9)	
O(7)–Co(1)–N(2)	91.5(2)	91.0(2)	91.8(2)	88.12(9)	
N(1)-Co(1)-N(2)	95.22(17)	95.13(18)	95.06(18)	96.15(9)	
O(1)–Co(2)–O(2)	83.39(16)	83.37(17)	83.20(16)	83.47(8)	
O(1)–Co(2)–O(6)	99.34(17)	99.21(18)	99.42(18)	98.04(9)	
O(1)–Co(2)–N(3)	114.8(2)	114.8(2)	114.8(3)	106.73(12)	
O(2)–Co(2)–O(6)	97.42(17)	97.55(16)	97.25(17)	99.18(9)	

O(2)–Co(2)–N(3)	112.3(3)	112.1(3)	112.1(3)	114.24(12)
O(6)-Co(2)-N(3)	136.3(3)	136.4(2)	136.6(3)	139.97(12)
O(3)-Co(2)-O(1)	73.52(17)	73.56(18)	73.86(18)	71.05(8)
O(3)-Co(2)-O(2)	156.29(17)	156.25(18)	156.29(17)	153.22(8)
O(3)-Co(2)-O(6)	81.4(2)	81.0(2)	81.0(2)	77.01(9)
O(3)-Co(2)-N(3)	83.0(3)	83.3(3)	83.6(3)	81.87(11)
O(3)-Co(2)-O(4)	129.72(17)	129.77(18)	129.50(19)	133.26(9)
O(4)-Co(2)-O(1)	154.98(17)	154.92(17)	154.89(18)	155.34(9)
O(4)-Co(2)-O(2)	72.37(17)	72.29(17)	72.39(17)	71.87(9)
O(4)-Co(2)-O(6)	78.26(18)	78.63(18)	78.45(18)	86.10(11)
O(4)-Co(2)-N(3)	81.0(2)	80.8(2)	80.8(2)	84.16(13)

i-j		i—j			
reported	r ₀	this complex	r _{ij}	S _{ij}	Z_j
	1.60		2.007	0.222	
0-Co21	1.68	O(1)- $Co(1)$	2.087	0.332	
O-Co ²⁺	1.68	O(2)-Co(1)	2.103	0.318	
O-Co ²⁺	1.68	O(5)-Co(1)	2.124	0.301	2.103
O-Co ²⁺	1.68	O(7)-Co(1)	2.141	0.287	
N-Co ²⁺	1.80	N(1)-Co(1)	2.106	0.436	
N-Co ²⁺	1.80	N(2)-Co(1)	2.113	0.429	
O–Co ²⁺	1.68	O(1)-Co(2)	2.015	0.404	
O–Co ²⁺	1.68	O(2)-Co(2)	2.048	0.369	2.093
O-Co ²⁺	1.68	O(3)-Co(2)	2.314	0.180	
O–Co ²⁺	1.68	O(4)-Co(2)	2.350	0.163	

Table S3. Bond valence sum calculation and the related parameters of subunit A in complex 1.

O-Co ²⁺	1.68	O(6)-Co(2)	2.031	0.387
N-Co ²⁺	1.80	N(3)-Co(2)	1.997	0.587

Table S4. Bond valence sum calculation and the related parameters of subunit B in complex 1.

i-j		i—j			
reported	r ₀	this complex	r _{ij}	\mathbf{S}_{ij}	Z_j
O-Co ²⁺	1.68	O(1)-Co(1)	2.086	0.333	
O-Co ²⁺	1.68	O(2)-Co(1)	2.108	0.314	
O-Co ²⁺	1.68	O(5)-Co(1)	2.123	0.302	2.091
O-Co ²⁺	1.68	O(7)-Co(1)	2.146	0.283	
N-Co ²⁺	1.80	N(1)-Co(1)	2.119	0.422	
N-Co ²⁺	1.80	N(2)-Co(1)	2.106	0.437	
O-Co ²⁺	1.68	O(1)-Co(2)	2.018	0.401	
O-Co ²⁺	1.68	O(2)-Co(2)	2.042	0.375	2.100
O-Co ²⁺	1.68	O(3)-Co(2)	2.319	0.177	

O-Co ²⁺	1.68	O(4)-Co(2)	2.348	0.164	
O-Co ²⁺	1.68	O(6)-Co(2)	2.025	0.393	
N-Co ²⁺	1.80	N(3)-Co(2)	1.995	0.590	

Table S5. Bond valence sum calculation and the related parameters of subunit C in complex 1.

i-j		i—j			
reported	r ₀		r _{ij}	\mathbf{S}_{ij}	Z_j
reported		this complex			
O-Co ²⁺	1.68	O(1)-Co(1)	2.088	0.331	
O-Co ²⁺	1.68	O(2)-Co(1)	2.101	0.320	
O-Co ²⁺	1.68	O(5)-Co(1)	2.122	0.302	
					2.144
O-Co ²⁺	1.68	O(7)-Co(1)	2.135	0.291	
N-Co ²⁺	1.80	N(1)-Co(1)	2.105	0.437	
N-Co ²⁺	1.80	N(2)-Co(1)	2.109	0.433	
O-Co ²⁺	1.68	O(1)-Co(2)	2.103	0.331	2.002

O–Co ²⁺	1.68	O(2)-Co(2)	2.040	0.377
O–Co ²⁺	1.68	O(3)-Co(2)	2.321	0.176
O–Co ²⁺	1.68	O(4)-Co(2)	2.347	0.164
O–Co ²⁺	1.68	O(6)-Co(2)	2.027	0.369
N-Co ²⁺	1.80	N(3)-Co(2)	1.998	0.585

Table S6. Bond valence sum calculation and the related parameters of complex 2.

i-j		i—j			
renorted	r ₀		r _{ij}	\mathbf{S}_{ij}	Z_j
reporteu		this complex			
O-Co ²⁺	1.68	O(1)-Co(1)	2.111	0.311	
O-Co ²⁺	1.68	O(2)-Co(1)	2.046	0.370	
O-Co ²⁺	1.68	O(5)-Co(1)	2.118	0.306	
					2.146
O-Co ²⁺	1.68	O(7)-Co(1)	2.125	0.300	
N-Co ²⁺	1.80	N(1)-Co(1)	2.100	0.444	
N-Co ²⁺	1.80	N(2)-Co(1)	2.125	0.415	
O-Co ²⁺	1.68	O(1)-Co(2)	2.023	0.395	
					2.065
O-Co ²⁺	1.68	O(2)-Co(2)	2.004	0.416	

O-Co ²⁺	1.68	O(3)-Co(2)	2.518	0.103	
O-Co ²⁺	1.68	O(4)-Co(2)	2.387	0.147	
O-Co ²⁺	1.68	O(6)-Co(2)	2.030	0.388	
N-Co ²⁺	1.80	N(3)-Co(2)	1.979	0.616	

ESI References

- 1. M. A. Spackman and D. Jayatilaka, CrystEngComm, 2009, 11, 19-32.
- 2. C. M. Z. Wilson, M. Ho, A. M. N. Lopez and S. Casassa, Theor Chem Acc., 2016, 135, 188.
- 3. H. F. Clausen, M. S. Chevallier, M. A. Spackman, B. B. Iversen, New J. Chem., 2010, 34, 193-199.
- 4. A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon and B. Kahr, *Cryst. Growth Des.*, 2008, **8**, 4517-4525.
- 5. A. Parkin, G. Barr, W. Dong, C. G. Gilmore, D. Jayatilaka, J. J. McKinnon, M. A. Spackman and C. C. Wilson, *CrystEngComm*, 2007, **9**, 648-652.
- 6. M. A. Spackman and J. J. McKinnon, CrystEngComm, 2002, 4, 378-392.
- 7. S. K. Seth, P. Manna, N. J. Singh, M. Mitra, A. D. Jana, A. Das, S. R. Choudhury, T. Kar, S. Mukhopadhyay and K.S. Kim, *CrystEngComm*, 2013, **15**, 1285-1288.