Supporting Information

A Keggin-type polyoxomolybdate-based crystalline material formed by hydrothermal transformation: photo/electrocatalytic properties and mechanism study

Peisen Wang,[‡]^a Aadil Nabi Chishti,[‡]^a Peng Chen,^a Zengxiang Lv,^a Yaya Tan,^a Hanzhi Zhang,^a Junjie Zha,^a Zhiyuan Ma,^a Lubin Ni,^{*a} Lu-nan Zhang^{*a} and Yongge Wei^{*bc}

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China E-mail: <u>lbni@yzu.edu.cn</u>, <u>zhangln@yzu.edu.cn</u>, <u>yonggewei@mail.tsinghua.edu.cn</u>

^b Key lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

^c State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.

[‡]These authors contributed equally to this work.

Experimental Section

1. Physical measurements

Fourier-transform infrared (FT-IR) spectra were obtained with a Cary 5000 FT-IR spectrometer using KBr particles in the range of 400-4000 cm⁻¹. Powder XRD (PXRD) patterns ($2\theta = 5-50^{\circ}$) were collected at room temperature using a Bruker D8 Advance XRD diffractometer at 40 kV and 40 mA with Cu K α ($\lambda = 1.5406$ Å) radiation. Using a TG 209F3 thermogravimetric analyzer from the German Netzsch Group, under air atmosphere with a heating rate of 10 K • min⁻¹ in the temperature region of 30-900 °C.

2. Single-crystal structure determination

Single crystal X-ray diffraction data of complex **1** were collected at 293 K using a sealed Tube Bruker Smart APEX II CCD (Mo K α radiation, $\lambda = 0.71073$ Å). All the non-H atoms were determined by direct methods and refined anisotropically by full-matrix least-squares techniques based on F^2 by using the SHELXTL software package and Olex 2 software.^{1,2} More details of Xray structure analysis are given in **Table S1**. The selected bond lengths and angles are listed in **Table S2**.

3.Photocatalytic process

The photocatalytic process was proceeded in a water-cooling quartz container. 50 mg of complex 1 was dispersed in 100 mL of 10 mg L⁻¹ MB aqueous solution and magnetically stirred for about 30 min to ensure the adsorption-desorption equilibrium in the dark. After the dark reaction, 500 μ L of H₂O₂ was added into the above solution, and the mixture was exposed to a UV lamp with continuous stirring. 2.0 mL samples were collected after every 4 minutes and analyzed by using a UV-Vis spectrophotometer.

4.Electrochemical measurements

Electrochemical experiments were carried out using an electrochemical workstation (CHI760E, Chen Hua, China). A typical three electrode system was established: a modified glassy carbon working electrode (GCE, d = 3mm), a saturated calomel electrode (SCE) reference electrode, and a Pt wire counter electrode. The working electrode was prepared as follows: 4 mg of complex 1 and 1 mg of Ketjenblack carbon were dispersed in 1 mL of ethanol and thoroughly ground in a mortar. The mixture was completely transferred into a 1.5 mL centrifuge tube, to which 50 µL of Nafion solution (5 wt%) was added, and then the mixture was further sonicated for 1 h to ensure fully dispersed. Afterward, 5 μL of the obtained homogeneous ink was dropped onto the surface of a bare

GCE. Finally, the electrode was dried in the air.

Complex	1
Empirical formula	$C_{60}Cu_6SiMo_{18}N_{12}O_{62}$
Formula weight	4096.97
Temperature, K	293(K)
Wavelength, Å	Μο Κα(0.71073)
Crystal system	Monoclinic
Space group	P21/c
a, Å	13.9435(8)
b, Å	20.0147(12)
c, Å	17.2063(11)
α, °	90
β, °	93.972
γ,°	90
<i>V</i> , Å ³	4790.3(5)
Ζ	2
D (calculated), g/cm ³	2.840
Abs. coeff., mm ⁻¹	3.695
<i>F</i> (000)	3848.0
Crystal size, mm	0.18 x 0.10 x 0.08
θ range for data collection, °	3.126 ~ 54.206
Reflections collected / unique / R_{int}	44626/10907/0.0486
Data / restraints / parameters	10471/0/739
GOF on F^2	1.156
Final R indices R_1 , $wR_2 [I > 2\sigma(I)]$	0.0674, 0.1617
<i>R</i> indices R_1 , wR_2 [all data]	0.0766, 0.1665
Largest diff. peak and hole, e. Å ⁻³	2.00 /-1.53

 Table S1. Crystallographic data and structural correction parameters.

 $R_1 = \sum (Fo - Fc) / \sum Fo and \ wR_2 = \{ \sum w (Fo^2 - Fc^2)^2 / \sum w (Fo^2)^2 \}^{1/2}$

Mo(1)-O(24)	1.728(8)	Mo(1)-O(29) ¹	2.131(6)
Mo(1)-O(25)	1.772(7)	Mo(1)-O(27) ¹	2.186(7)
Mo(1)-O(23)	1.773(7)	Mo(1)-O(28)	2.219(7)
Cu(1)-O(25)	1.924(7)	Cu(2)-O(30)	1.974(7)
Cu(1)-O(26)	1.980(7)	Cu(3)-O(23)	1.932(7)
Cu(1)-N(3)	1.979(9)	Cu(3)-O(22)	1.942(7)
Cu(1)-N(4)	1.983(9)	Cu(3)-N(2)	1.985(8)
Cu(1)-O(32) ¹	2.417(7)	Cu(3)-N(1)	1.988(9)
Cu(2)-O(31)	1.917(7)	Cu(3)-O(8)	2.375(9)
Cu(2)-N(5)	1.970(9)	Si (1)-O(11) ²	1.638(14)
Si(1)-O(3) ²	1.596(14)	Si (1)-O(10)	1.647(14)
Si(1)-O(3)	1.596(14)	Si (1)-O(10) ²	1.647(14)
Si(1)-O(11)	1.638(14)	$Mo(9)-O(21)^2$	2.010(9)
$Mo(6)-O(2)^2$	1.971(9)	Mo(3)-O(27) ¹	2.170(6)
$Mo(5)-O(3)^2$	2.397(15)	Mo(1)-O(27) ¹	2.186(7)
$Mo(6)-O(3)^2$	2.438(13)	Mo(1)-O(29) ¹	2.131(6)
$Mo(6)-O(6)^2$	2.036(10)	Mo(2)-O(29) ¹	2.240(7)
$Mo(8)-O(7)^2$	2.356(14)	$Cu(1)-O(32)^1$	2.417(7)
N(1)-C(30)	1.340(14)	N(2)-C(25)	1.350(13)
N(1)-C(26)	1.365(13)	N(3)-C(10)	1.331(17)
N(2)-C(21)	1.348(15)	N(3)-C(6)	1.366(15)
C(1)-C(2)	1.391(18)	C(3)-C(4)	1.39(3)
C(2)-C(3)	1.38(3)	C(4)-C(5)	1.394(18)
C(5)-C(6)	1.466(17)	C(6)-C(7)	1.386(16)

Table S2. Selected bond lengths (\AA) and selected angles $(^{\circ})$ for complex 1.

Symmetry transformations used to generate equivalent atoms: 1-x+1, -y+1, -z+2; 2 -x, -y+1, -z+1

Complex	Atom	Ν	$\sum S_{ij}$	Δ
[(SiMo ₁₂ O ₄₀)Cu ₆ (2,2'-bipy) ₆ (Mo ₆ O ₂₂)]	Si	4+	3.815	0.185
	Mo1	6+	5.945	0.055
	Mo2	6+	5.983	0.017
	Mo3	6+	6.047	0.047
	Mo4	6+	6.614	0.614
	Mo5	6+	6.773	0.773
	Mo6	6+	6.734	0.734
	Mo7	6+	6.345	0.345
	Mo8	6+	6.479	0.479
	Mo9	6+	6.600	0.600

 Table S3. Bond valence calculations for complex 1.

Table S4. Comparison of photo/electro- performance for complex 1 with other p	polyoxometalate-
based catalysts.	

0				
catalyst	Time(min)	CAT ^a (%)	Reference	
TMSP-1	□90	-	3	
TMSP-2	□90	-	3	
[Cu ^{II} Lo]-POM-1		-	4	
[Cu ^{II} Lo]-POM-2	60	-	4	
Cu-PW ₁₂	□120	-	5	
Cu-SiW ₁₂	□120	-	5	
Cu-PMo ₁₂	□120	-	5	
Cu-PW ₁₂	-	<20	6	
Cu-POMOF	-	<20	7	
Cu-POM	-	<30	8	
Complex 1	24	33.2	This work	
^a represents the CAT at $c(NO_2)=10mM$.				

Fig S1. XRD patterns of complex 1 (use glass vials) and green precipitate (not use glass vials).

Fig S2. Infinite linear chain (a) and π - π interactions (b) of complex **1**.

Fig S3. Three-dimensional stacking diagram of complex 1 along the b-axis (b) and the c-axis (c).

Fig S4. a) Mo 3d and b) Cu 2p XPS spectra of complex 1.

Fig S5. HOMO's and LUMO's of complex 1.

Fig S6. Solid state UV/vis spectrum (a) and diffuse reflection spectra of Kubelka–Munk (K-M) function versus energy (eV) of complex 1.

Optical Band Gaps

To evaluate the semiconductor behaviors and photocatalytic activities of complex **1**, the diffuse reflection spectra of complex **1** were carried out in the crystalline state at room temperature (**Fig. S3a**). The band gaps (Eg) of complex **1** were obtained from the Kubelka–Munk (K-M) function F vs E, which are estimated to be 2.33 eV (**Fig. S3b**). The band gap values indicate that complex **1** may respond to UV irradiation and have the potential capacity for photocatalytic reactions.^{9,10}

Fig S7. (a) Photocatalytic decomposition rate of the blank MB aqueous solution; Photocatalytic decomposition rate of the MB solution containing (b) complex 1 without H_2O_2 ; (c) H_2O_2 without complex 1; (d) complex 1 and H_2O_2 under dark room; (e) complex 1 in an oxygen atmosphere; (f) Cu^{2+}

Fig S8. The Amperometric i-t curve of complex 1 in $0.1 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M N}a_2\text{SO}_4$ aqueous solution at -0.19V versus SCE.

Fig S9. (a-b) SEM images of the substance before and after electrolysis. (c-h) Corresponding elemental mapping images of complex **1**.

References:

- 1. G.M. Sheldrick. Acta Cryst., 2015, 71, 3-8.
- Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- 3. J.J. Sun, Y.L. Wang and G.Y. Yang. *CrystEngComm*, 2020, **22**, 8387-8393.
- 4. L.J. Xu, W.Z. Zhou, L.Y. Zhang, B. Li, H.Y. Zang, Y.H. Wang and Y.G. Li, *CrystEngComm*, 2015, **17**, 3708-3714.
- S.U. Khan, M. Akhtar, F.U. Khan, J. Peng, A. Hussain, H.F. Shi, J. Du, G. Yan and Y.G. Li, J. Coord. Chem., 2018, 71, 16-18.
- 6. Y. Hou, Y. Niu, C.J. Zhang, H.J. Pang and H.Y. Ma, J. Chem. Sci., 2017, 129, 1639-1645.
- 7. W.L. Sun, S.B. Li, H.Y. Ma, H.J. Pang, L. Zhang and Z.F. Zhang, *RSC Adv.*, 2014, **4**, 24755-24761.
- J.W. Zhao, D.Y. Shi, L.J. Chen, P.T. Ma, J.P. Wang, J. Zhang and J.Y. Niu, *Cryst. Growth Des.*, 2013, 13, 4368-4377.
- 9. T. Wen, D.X. Zhang and J. Zhang. Inorg. Chem., 2013, 52, 12-14.
- 10. W.Q. Kan, B. Liu, J. Yang, Y.Y. Liu and J.F. Ma, Cryst. Growth Des., 2012, 12, 2288-2298.