Electronic Supplementary Information

Syntheses, structures and magnetic properties of mononuclear, dinuclear and tetranuclear dysprosium(III) complexes based on azotetrazole-3-hydroxy-2-naphthoic acid

Yun-Jing Zhong^a, Yu-Ying Zhu^a, Jin-Lin Mo^a, Sheng-Lan Ye^a, Wen-Dan Luo^a, Xin Huang, Wen-Bin Chen^{a*} and Wen Dong^{a*}

^aGuangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China

Contents of the Electronic Supplementary Information

Scheme S1. Synthesis of H3ATNA
Table S1-3. Continuous Shape Measures calculations (CShM) for 1-3.
Figure S2. Hydrogen Bonds and π - π Stacking interaction of H ₃ ATNA4
Figure S3. Hydrogen Bonds, π - π Stacking interaction and 3D Supramolecular structure of 1
Figure S4. Hydrogen Bonds and 3D Supramolecular structure of 2
Figure S5. Hydrogen Bonds and 3D Supramolecular structure of 3
Table S4. Crystal data and structure refinement of H ₃ ATNA and complexes 1-3.
Figure S6. Powder X-ray diffraction (PXRD) patterns for complexes 1-3
9
Figure S7. Thermal gravimetric Analyses (TGA) curves for complexes 1-3
9
Table S5. The bond lengths [Å] for complex H ₃ ATNA. 10
Table S6. The angles [°] for complex H ₃ ATNA. 10
Table S7. The bond lengths [Å] for complex 1. 11
Table S8. The angles [°] for complex 1. 11
Table S9 The bond lengths [Å] for complex 2. 12
Table S10. The angles [°] for complex 2. 12
Table S11 The bond lengths [Å] for complex 3. 14
Table S12. The angles [°] for complex 3. 14
Figure S8. The isothermal M vs. H plots for 1-3
Figure S9. Temperature dependence of the in-phase χ_{M}' and out-of-phase χ_{M}'' for 1 in a
zero dc field and a 1000 Oe dc field17
Figure S10. Temperature dependence of the in-phase χ_{M} and out-of-phase χ_{M} for 2 in a
1000 Oe dc field
Figure S11. Temperature dependence of the in-phase χ_{M} and out-of-phase χ_{M} for 3 in a
1000 Oe dc field
Table S13 The average energy barriers($\Delta E/k_B$) and pre-exponential factors(τ_0) of complex
2
Table S14 The average energy barriers($\Delta E/k_B$) and pre-exponential factors(τ_0) of complex 3

Scheme S1 Synthesis of H₃ATNA

	Table S1 geometry analysis by using SHAPE 2.0 program (complex 1)							
	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	MFF-9			
	$(C_{4\mathrm{v}})$	$(C_{4\mathrm{v}})$	(D_{3h})	(D_{3h})	$(C_{\rm s})$			
Dy1	2.01041	1.40309	1.65661	1.55637	1.96575			
	Table S2 geomet	try analysis by	using SHAPE 2	2.0 program (co	(mplex 2)			
	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	MFF-9			
	$(C_{4\mathrm{v}})$	$(C_{4\mathrm{v}})$	(D_{3h})	(D_{3h})	$(C_{\rm s})$			
Dy1	3.42932	2.72331	3.67878	2.51046	2.87574			
	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8			
	(D_{4d})	(D_{2d})	(C_{2v})	(C_{2v})	(D_{2d})			
Dy2	4.92076	2.58860	3.02256	2.23626	4.48446			
	Table S3 geomet	try analysis by	using SHAPE 2	2.0 program (co	omplex 3)			
	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	MFF-9			
	$(C_{4\mathrm{v}})$	$(C_{4\mathrm{v}})$	(D_{3h})	(D_{3h})	$(C_{\rm s})$			
Dy1	3.31516	2.71549	3.42872	2.40437	2.98622			
Dy4	3.18033	2.67698	3.87098	2.87677	2.89240			
	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8			
	(D_{4d})	(<i>D</i> _{2d})	(C_{2v})	(C_{2v})	(<i>D</i> _{2d})			
Dy2	3.24455	2.38178	2.26877	1.71392	4.53502			
Dy3	2.52772	1.96188	2.17738	1.55400	4.38655			

*CSAPR-9 = Spherical capped square antiprism; TCTPR-9 = Spherical tricapped trigonal prism;

JCSAPR-9 = Capped square antiprism J10; JTCTPR-9 = Tricapped trigonal prism J51;

MFF-9 = Muffin; SAPR-8 = Square antiprism;

TDD-8 = Triangular dodecahedron; JBTPR-8 = Biaugmented trigonal prism J50;

BTPR-8 = Biaugmented trigonal prism; JSD-8 = Snub diphenoid J84.

Fig. S1 For H₃ATNA, (a)hydrogen bonds and $\pi-\pi$ stacking interaction along the a axis, (b) hydrogen bonds and $\pi-\pi$ stacking interaction along the *a* axis and b axis

Fig. S2 For 1, (a)hydrogen bonds along the *b* axis, (b)hydrogen bonds and $\pi-\pi$ stacking interaction along the a axis and *c* axis, (c) 3D supramolecular structure(the blue lines between the dysprosium are just for observation, without any interaction).

Fig. S3 For 2, (a) hydrogen bonds along the c axis, (b) hydrogen bonds along the a and b axis to form a two-dimensional plane, (c) 3D supramolecular structure(the blue lines between the dysprosium are just for observation, without any interaction).

Fig. S4 For 3, (a) hydrogen bonds along the c axis, (b) hydrogen bonds along the a and b axis to form a two-dimensional plane. (c) 3D supramolecular structure(the blue lines between the dysprosium are just for observation, without any interaction).

Complexes	H ₃ ATNA	1	2	3
Empirical formula	$C_{12}H_8N_6O_3$	$C_{54}H_{76}DyN_{21}O_{14}$	$C_{46}H_{47}Dy_2N_{21}O_{16}$	$C_{115}H_{165}Dy_4N_{45}O_{29}$
Formula weight	284.24	1405.85	1475.04	3291.91
Crystal system	monoclinic	triclinic	monoclinic	triclinic
Space group	$P2_{1}/c$	$P\overline{1}$	$P2_{1}/c$	$P\overline{1}$
a/Å	9.4569(11)	13.5498(2)	22.56781(18)	14.5277(2)
b/Å	9.3238(11)	14.6671(2)	12.14163(10)	19.5900(3)
c/Å	13.6224(16)	17.4729(3)	23.5494(2)	24.9631(4)
$\alpha/^{\circ}$	90	75.5730(10)	90	85.4820(10)
β/°	106.127(8)	81.5450(10)	101.8928(9)	76.1500(10)
γ/°	90	73.268(2)	90	75.6980(10)
Volume/Å ³	1153.9(2)	3209.98(9)	6314.26(10)	6682.64(18)
Ζ	4	2	4	2
$ ho_{calc}/g \cdot cm^{-3}$	1.636	1.455	1.552	1.636
μ/mm^{-1}	0.124	6.884	13.181	12.505
F (000)	584.0	1450.0	2920.0	3332.0
Reflections collected	18248	44179	49042	94700
Independent reflections	2651	12616	12343	26062
Goodness-of-fit on F ²	1.021	1.067	1.046	1.042
Final R indexes	$R_1 = 0.0394$	$R_1 = 0.0476$	$R_1 = 0.0502$	$R_1 = 0.0707$
[I>=2σ (I)]	$wR_2 = 0.0791$	$wR_2 = 0.1184$	$wR_2 = 0.1259$	$wR_2 = 0.1549$
Final R indexes	$R_1 = 0.0814$	$R_1 = 0.0514$	$R_1 = 0.0552$	$R_1 = 0.0877$
[all data]	$wR_2 = 0.0954$	$wR_2 = 0.1201$	$wR_2 = 0.1286$	$wR_2 = 0.1635$
CCDC	2207284	2207285	2207286	2207287

Table S4 Crystal data and structure refinement of H₃ATNA and complexes 1-3.

Fig. S5 Powder X-ray diffraction (PXRD) patterns for complexes 1-3

Fig. S6 TG curves of complexes 1-3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C12	1.201(2)	C2	C10	1.462(2)
O2	C12	1.325(2)	C3	C4	1.448(2)
03	C3	1.2463(19)	C4	C5	1.351(2)
N1	N2	1.3521(18)	C4	C12	1.490(2)
N1	C1	1.330(2)	C5	C11	1.435(2)
N2	N3	1.2885(19)	C6	C7	1.368(3)
N3	N4	1.3617(19)	C6	C11	1.398(2)
N4	C1	1.3137(19)	C7	C8	1.380(3)
N5	N6	1.3277(18)	C8	C9	1.374(2)
N5	C1	1.365(2)	C9	C10	1.391(2)
N6	C2	1.3111(19)	C10	C11	1.404(2)
C2	C3	1.468(2)			

Table S5 The bond lengths [Å] for H_3ATAN

Table S6 The bond angl	les [°]	for complex	H ₃ ATAN
------------------------	---------	-------------	---------------------

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	N2	108.02(14)	C5	C4	C3	120.04(15)
N3	N2	N1	105.87(13)	C5	C4	C12	118.25(16)
N2	N3	N4	111.75(13)	C4	C5	C11	123.77(16)
C1	N4	N3	104.53(13)	C7	C6	C11	120.28(17)
N6	N5	C1	116.44(14)	C6	C7	C8	119.93(19)
C2	N6	N5	120.50(14)	C9	C8	C7	120.78(19)
N1	C1	N5	125.20(15)	C8	C9	C10	120.54(17)
N4	C1	N1	109.83(14)	C9	C10	C2	122.55(15)
N4	C1	N5	124.90(15)	C9	C10	C11	118.56(15)
N6	C2	C3	124.32(15)	C11	C10	C2	118.88(14)
N6	C2	C10	115.70(14)	C6	C11	C5	120.80(15)
C10	C2	C3	119.96(14)	C6	C11	C10	119.90(16)
03	C3	C2	120.45(15)	C10	C11	C5	119.30(15)
03	C3	C4	121.84(15)	01	C12	02	120.16(19)
C4	C3	C2	117.71(15)	O1	C12	C4	122.50(19)
C3	C4	C12	121.71(16)	O2	C12	C4	117.32(17)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	01	2.331(3)	Dy1	N7	2.438(3)
Dy1	04	2.306(3)	Dy1	N12	2.622(3)
Dy1	07	2.310(3)	Dy1	N13	2.454(3)
Dy1	N1	2.455(3)	Dy1	N18	2.604(3)
Dy1	N6	2.582(3)			

Table S7 The bond lengths [Å] for complex 1

Table S8 The bond angles [°] for complex 1

				A 4	• •		A 1 /º
Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/
01	Dy1	N1	126.82(10)	04	Dy1	N18	73.47(10)
01	Dy1	N6	63.93(9)	O7	Dy1	01	81.06(10)
01	Dy1	N7	83.44(10)	07	Dy1	N1	85.58(11)
01	Dy1	N12	76.17(10)	07	Dy1	N6	74.63(10)
01	Dy1	N13	147.81(11)	07	Dy1	N7	149.50(10)
01	Dy1	N18	138.36(10)	07	Dy1	N12	137.10(10)
O4	Dy1	01	77.17(10)	07	Dy1	N13	126.09(10)
O4	Dy1	07	76.32(10)	07	Dy1	N18	63.84(10)
O4	Dy1	N1	147.47(11)	N1	Dy1	N6	62.89(10)
O4	Dy1	N6	134.16(10)	N1	Dy1	N12	136.93(11)
O4	Dy1	N7	125.25(11)	N1	Dy1	N18	74.32(11)
O4	Dy1	N12	63.50(10)	N6	Dy1	N12	123.90(10)
O4	Dy1	N13	91.82(11)	N6	Dy1	N18	121.60(10)
N7	Dy1	N1	82.94(12)	N13	Dy1	N1	77.19(11)
N7	Dy1	N6	74.98(11)	N13	Dy1	N6	134.00(11)
N7	Dy1	N12	62.27(11)	N13	Dy1	N12	71.88(11)
N7	Dy1	N13	78.48(11)	N13	Dy1	N18	62.37(11)
N7	Dy1	N18	137.94(11)	N18	Dy1	N12	114.48(10)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	04	2.304(3)	Dy1	Dy2	3.6391(4)
Dy1	07	2.385(3)	Dy2	O4	2.352(3)
Dy1	O1	2.339(3)	Dy2	07	2.416(3)
Dy1	N7	2.487(4)	Dy2	01	2.469(3)
Dy1	N12	2.611(4)	Dy2	05	2.349(4)
Dy1	N6	2.585(4)	Dy2	O2	2.291(4)
Dy1	N13	2.463(4)	Dy2	O10	2.350(4)
Dy1	N18	2.567(4)	Dy2	O 8	2.306(4)
Dy1	N1	2.476(4)	Dy2	011	2.431(4)

Table S9 The bond lengths [Å] for complex $\mathbf{2}$

Table S10 The bond angles [°] for complex $\mathbf{2}$

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
04	Dy1	Dy2	39.06(8)	04	Dy2	Dy1	38.13(7)
O4	Dy1	O7	69.77(11)	O4	Dy2	O7	68.47(11)
O4	Dy1	01	68.10(11)	O4	Dy2	01	65.24(11)
O4	Dy1	N7	121.54(13)	O4	Dy2	011	137.56(12)
O4	Dy1	N12	62.35(12)	07	Dy2	Dy1	40.39(7)
O4	Dy1	N6	82.47(12)	07	Dy2	01	65.95(11)
O4	Dy1	N13	151.31(13)	07	Dy2	011	147.82(14)
O4	Dy1	N18	132.56(12)	01	Dy2	Dy1	39.50(8)
O4	Dy1	N1	98.46(13)	05	Dy2	Dy1	101.26(9)
O7	Dy1	Dy2	41.03(8)	05	Dy2	04	68.43(12)
O7	Dy1	N7	93.78(13)	05	Dy2	O7	136.85(12)
O7	Dy1	N12	89.77(12)	05	Dy2	01	97.42(12)
O7	Dy1	N6	131.39(13)	05	Dy2	O10	77.60(13)
O7	Dy1	N13	122.75(12)	05	Dy2	011	71.77(14)
O7	Dy1	N18	63.45(12)	02	Dy2	Dy1	107.23(10)
O7	Dy1	N1	157.40(13)	02	Dy2	04	129.28(13)
01	Dy1	Dy2	42.15(8)	02	Dy2	O7	110.66(13)
01	Dy1	O 7	68.50(12)	02	Dy2	01	68.86(12)
01	Dy1	N7	156.49(13)	02	Dy2	05	97.96(14)
01	Dy1	N12	130.22(11)	02	Dy2	O10	148.16(14)
01	Dy1	N6	64.28(13)	02	Dy2	08	88.56(15)
01	Dy1	N13	91.56(12)	O2	Dy2	011	70.03(14)
01	Dy1	N18	87.48(12)	O10	Dy2	Dy1	104.54(10)
01	Dy1	N1	126.27(14)	O10	Dy2	O4	78.93(12)
N7	Dy1	Dy2	130.22(10)	O10	Dy2	O7	92.33(13)

N7	Dy1	N12	61.93(13)	O10	Dy2	01	142.74(12)
N7	Dy1	N6	134.80(14)	O10	Dy2	011	78.77(15)
N7	Dy1	N18	70.35(14)	08	Dy2	Dy1	112.33(10)
N12	Dy1	Dy2	92.21(8)	08	Dy2	O4	132.70(13)
N6	Dy1	Dy2	93.24(10)	08	Dy2	O7	72.15(12)
N6	Dy1	N12	112.01(13)	08	Dy2	01	119.48(12)
N13	Dy1	Dy2	131.74(10)	08	Dy2	05	142.16(13)
N13	Dy1	N7	85.19(14)	08	Dy2	O10	77.54(15)
N13	Dy1	N12	136.03(13)	08	Dy2	011	75.73(15)
N13	Dy1	N6	70.20(13)	011	Dy2	Dy1	171.67(12)
N13	Dy1	N18	62.54(13)	011	Dy2	01	135.34(14)
N13	Dy1	N1	76.89(13)	N1	Dy1	N7	75.65(15)
N18	Dy1	Dy2	95.98(9)	N1	Dy1	N12	67.64(13)
N18	Dy1	N12	123.00(13)	N1	Dy1	N6	62.42(15)
N18	Dy1	N6	123.62(13)	N1	Dy1	N18	128.15(13)
N1	Dy1	Dy2	135.80(10)				

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	Dy2	3.6124(6)	Dy3	Dy4	3.6191(6)
Dy1	01	2.290(5)	Dy3	09	2.352(5)
Dy1	04	2.352(5)	Dy3	O10	2.331(5)
Dy1	07	2.392(5)	Dy3	011	2.319(5)
Dy1	N1	2.499(6)	Dy3	O13	2.418(5)
Dy1	N6	2.610(6)	Dy3	O14	2.275(5)
Dy1	N7	2.460(6)	Dy3	016	2.443(5)
Dy1	N12	2.621(6)	Dy3	O17	2.313(5)
Dy1	N13	2.438(6)	Dy3	O20	2.441(5)
Dy1	N18	2.563(6)	Dy4	O10	2.262(5)
Dy2	01	2.353(6)	Dy4	O13	2.395(5)
Dy2	02	2.310(5)	Dy4	016	2.388(5)
Dy2	04	2.398(4)	Dy4	N19	2.480(6)
Dy2	05	2.251(5)	Dy4	N24	2.622(6)
Dy2	07	2.449(5)	Dy4	N25	2.471(6)
Dy2	08	2.285(5)	Dy4	N31	2.453(6)
Dy2	O18	2.380(5)	Dy4	N36	2.554(6)
Dy2	019	2.464(5)	Dy4	N30	2.602(7)

Table S11 The bond lengths [Å] for complex $\mathbf{3}$

Table S12 The bond angles [°] for complex $\mathbf{3}$

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Dy1	Dy2	39.56(11)	01	Dy2	Dy1	38.29(11)
01	Dy1	04	68.67(16)	01	Dy2	O4	66.88(16)
01	Dy1	07	72.28(16)	01	Dy2	O7	70.20(16)
01	Dy1	N1	122.65(18)	01	Dy2	018	74.85(16)
01	Dy1	N6	62.46(17)	01	Dy2	019	131.09(17)
01	Dy1	N7	88.73(19)	02	Dy2	Dy1	102.58(12)
01	Dy1	N12	83.01(17)	O2	Dy2	01	68.74(17)
01	Dy1	N13	153.44(19)	02	Dy2	04	101.79(17)
01	Dy1	N18	135.31(17)	O2	Dy2	O7	138.78(16)
O4	Dy1	Dy2	40.97(11)	O2	Dy2	018	84.73(17)
O4	Dy1	07	66.07(15)	02	Dy2	019	69.75(17)
O4	Dy1	N1	154.56(17)	O4	Dy2	Dy1	40.02(11)
O4	Dy1	N6	129.92(17)	O4	Dy2	O7	64.50(15)
O4	Dy1	N7	121.55(18)	04	Dy2	019	147.46(17)
O4	Dy1	N12	62.38(17)	05	Dy2	Dy1	112.52(14)
O4	Dy1	N13	99.27(18)	05	Dy2	01	131.20(18)
O4	Dy1	N18	84.84(17)	05	Dy2	O2	94.75(19)

07	Dy1	Dy2	42.33(11)	05	Dy2	O4	72.78(18)
07	Dy1	N1	94.38(18)	05	Dy2	O7	115.18(18)
07	Dy1	N6	88.73(16)	05	Dy2	08	84.51(18)
07	Dy1	N7	155.72(19)	05	Dy2	O18	151.74(18)
07	Dy1	N12	127.97(17)	05	Dy2	019	76.63(19)
07	Dy1	N13	125.83(19)	O7	Dy2	Dy1	41.14(11)
07	Dy1	N18	64.08(17)	O7	Dy2	019	141.78(16)
N1	Dy1	Dy2	131.53(14)	08	Dy2	Dy1	114.20(12)
N1	Dy1	N6	61.71(19)	08	Dy2	01	137.37(17)
N1	Dy1	N12	136.89(19)	08	Dy2	O2	140.49(17)
N1	Dy1	N18	71.52(18)	08	Dy2	O4	115.43(17)
N6	Dy1	Dy2	91.15(13)	08	Dy2	O7	73.49(16)
N6	Dy1	N12	119.30(18)	08	Dy2	O18	78.35(17)
N7	Dy1	Dy2	125.96(15)	08	Dy2	019	71.70(17)
N7	Dy1	N1	83.0(2)	O18	Dy2	Dy1	95.06(12)
N7	Dy1	N6	68.72(19)	O18	Dy2	O4	135.07(16)
N7	Dy1	N12	61.81(19)	O18	Dy2	07	81.32(16)
N7	Dy1	N18	135.9(2)	O18	Dy2	019	76.72(17)
N12	Dy1	Dy2	90.85(13)	019	Dy2	Dy1	169.01(13)
N13	Dy1	Dy2	139.17(14)	O10	Dy4	Dy3	38.67(12)
N13	Dy1	N1	78.5(2)	O10	Dy4	O13	67.87(17)
N13	Dy1	N6	129.68(19)	O10	Dy4	016	72.41(16)
N13	Dy1	N7	77.5(2)	O10	Dy4	N19	121.48(19)
N13	Dy1	N12	70.5(2)	O10	Dy4	N24	62.59(17)
N13	Dy1	N18	62.79(19)	O10	Dy4	N25	86.25(19)
N18	Dy1	Dy2	97.46(12)	O10	Dy4	N31	154.90(19)
N18	Dy1	N6	123.37(18)	O10	Dy4	N36	135.14(18)
N18	Dy1	N12	116.42(18)	O10	Dy4	N30	85.24(19)
09	Dy3	Dy4	92.26(12)	013	Dy4	Dy3	41.48(11)
09	Dy3	O13	133.26(16)	013	Dy4	N19	153.30(18)
09	Dy3	O16	79.81(16)	013	Dy4	N24	129.16(17)
09	Dy3	O20	78.03(17)	013	Dy4	N25	119.09(19)
O10	Dy3	Dy4	37.35(11)	013	Dy4	N31	103.25(19)
O10	Dy3	09	74.17(16)	013	Dy4	N36	84.37(18)
O10	Dy3	O13	66.43(16)	013	Dy4	N30	62.24(18)
O10	Dy3	O16	70.27(16)	016	Dy4	Dy3	42.08(12)
O10	Dy3	O20	130.52(17)	016	Dy4	013	65.40(16)
011	Dy3	Dy4	100.50(12)	O16	Dy4	N19	92.48(19)
011	Dy3	09	90.07(17)	016	Dy4	N24	88.97(16)
011	Dy3	010	68.38(17)	016	Dy4	N25	154.83(19)

011	Dy3	013	97.62(17)	016	Dy4	N31	126.75(18)
011	Dy3	016	138.63(16)	016	Dy4	N36	64.00(17)
011	Dy3	O20	71.65(17)	016	Dy4	N30	127.53(18)
013	Dy3	Dy4	41.00(11)	N19	Dy4	Dy3	128.45(15)
013	Dy3	016	64.22(16)	N19	Dy4	N24	60.91(19)
013	Dy3	O20	147.91(13)	N19	Dy4	N36	72.0(3)
014	Dy3	Dy4	112.91(13)	N19	Dy4	N30	138.6(2)
014	Dy3	09	153.92(17)	N24	Dy4	Dy3	89.85(12)
014	Dy3	O10	130.29(17)	N25	Dy4	Dy3	122.76(15)
O14	Dy3	011	91.82(18)	N25	Dy4	N19	87.4(2)
O14	Dy3	013	72.17(17)	N25	Dy4	N24	69.00(19)
014	Dy3	016	114.43(17)	N25	Dy4	N36	138.6(2)
O14	Dy3	017	83.34(18)	N25	Dy4	N30	61.5(2)
014	Dy3	O20	77.91(18)	N31	Dy4	Dy3	143.57(15)
016	Dy3	Dy4	40.92(11)	N31	Dy4	N19	77.4(2)
017	Dy3	Dy4	113.56(12)	N31	Dy4	N24	126.57(19)
017	Dy3	09	80.22(16)	N31	Dy4	N25	77.7(2)
017	Dy3	O10	138.15(17)	N31	Dy4	N36	63.14(19)
017	Dy3	011	144.78(17)	N31	Dy4	N30	70.2(2)
017	Dy3	013	113.71(16)	N36	Dy4	Dy3	97.69(13)
017	Dy3	016	73.05(16)	N36	Dy4	N24	124.24(18)
017	Dy3	O20	73.22(17)	N36	Dy4	N30	112.8(2)
O20	Dy3	Dy4	167.29(12)	N30	Dy4	Dy3	92.54(14)
O20	Dy3	016	142.15(16)	N30	Dy4	N24	121.95(19)

Fig. S7 The isothermal M vs. H plots for 1-3, respectively.

Fig. S8 Temperature dependence of the in-phase χ_M' and out-of-phase χ_M'' for 1 in a zero dc field(a); and in a 1000 Oe dc field(b).

Fig. S9 Temperature dependence of the in-phase χ_{M}' product and out-of-phase χ_{M}'' for **2** in a 1000 Oe dc field.

Fig. S10 Temperature dependence of the in-phase χ_{M}' product and out-of-phase χ_{M}'' for **3** in a 1000 Oe dc field.

complex 2					
	$\Delta E/k_B$	$ au_0$			
100 Hz	0.81 K	5.5×10 ⁻⁵ s			
1000 Hz	0.87 K	1.6×10 ⁻⁵ s			
average	0.84 K	3.6×10 ⁻⁵ s			

Table S13 The average energy barriers($\Delta E/k_B$) and pre-exponential factors(τ_0) of complex **2**

Table S14 The average energy barriers($\Delta E/k_B$) and pre-exponential factors(τ_0) of complex **3**

	$\Delta E/k_B$	$ au_0$
52 Hz	4.06 K	1.1×10 ⁻⁴ s
139 Hz	4.83 K	1.8×10 ⁻⁵ s
373 Hz	5.48 K	2.5×10 ⁻⁶ s
999 Hz	5.73 K	3.7×10 ⁻⁷ s
average	5.03 K	3.3×10 ⁻⁵ s