Cu(II) 3,5-diiodosalicylate complexes: precursor-dependent formation of mono-, di-, tri- and tetranuclear compounds and 1D coordination polymers

Mikhail A. Bondarenko, Pavel A. Abramov, Ilya V. Korolkov, Artem S. Bogomyakov, Maxim N. Sokolov and Sergey A. Adonin

Table S1. Experimental details of XRD

	1	2	3	4	5	6	7
Chemical formula	$C_{26}H_{20}Cul_4N_2O_6$	$C_{26}H_{20}Cul_4N_2O_6$	$C_{24}H_{16}Cul_4N_2O_6$	$\begin{array}{c} C_{37.60}H_{21.20}Cu_2I_8N\\ {}_{4.80}O_{12}\end{array}$	$C_{19}H_{17}ClCul_2N_2O_3$	$C_{21}H_{21}ClCul_2N_2O_3$	C ₅₀ H _{47.80} Cl ₄ Cu ₃ I ₄ N ₆ O ₆
M _r	1027.58	1027.58	999.53	1874.47	674.14	702.19	1668.76
Crystal system, space group	Monoclinic, P2 ₁ /n	Monoclinic, P2 ₁ /c	Triclinic, <i>P</i> [−] 1	Tetragonal, P4/mnc	Triclinic, <i>P</i> ⁻1	Triclinic, <i>P</i> ⁻1	Triclinic, <i>P</i> ⁻1
Temperature (K)	140	140	140	140	150	142	150
a, b, c (Å)	9.6199 (7), 9.1882 (5), 17.4611 (11)	24.6536 (8), 13.7854 (5), 8.6860 (3)	7.8509 (3), 8.4157 (5), 10.9695 (6)	11.0664 (6), 11.0664 (6), 23.521 (2)	9.0941 (4), 11.1084 (4), 11.1815 (4)	9.3176 (3), 11.6974 (4), 11.8686 (4)	8.5657 (2), 11.8674 (2), 13.5591 (3)
α, β, γ (°)	90, 104.355 (8), 90	90, 91.111 (3), 90	79.902 (5), 77.108 (4), 87.265 (4)	90, 90, 90	102.305 (3), 103.773 (3), 94.247 (3)	73.151 (3), 71.895 (3), 89.946 (3)	89.250 (1), 85.618 (1), 89.773 (1)
V (Å ³)	1495.19 (17)	2951.47 (18)	695.52 (6)	2880.6 (4)	1062.57 (7)	1171.09 (7)	1374.16 (5)
Z	2	4	1	2	2	2	1
μ (mm ⁻¹)	4.90	4.97	5.27	5.08	4.08	3.71	3.65
Crystal size (mm)	0.50 × 0.20 × 0.20	0.10 × 0.10 × 0.10	0.20 × 0.10 × 0.10	0.30 × 0.20 × 0.20	0.30 × 0.20 × 0.10	0.40 × 0.20 × 0.20	0.22 × 0.18 × 0.17
Diffractometer	New Xcalibur, AtlasS2	New Xcalibur, AtlasS2	New Xcalibur, AtlasS2	New Xcalibur, AtlasS2	New Xcalibur, AtlasS2	New Xcalibur, AtlasS2	Bruker D8 Venture diffractometer

							
Absorption correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	CrysAlis PRO	SADABS 2016/2:
	1.171.38.41	1.171.38.41	1.171.38.41	1.171.38.41	1.171.38.41	1.171.38.41	Krause, L.,
	(Rigaku Oxford	(Rigaku Oxford	(Rigaku Oxford	(Rigaku Oxford	(Rigaku Oxford	(Rigaku Oxford	Herbst-Irmer, R.,
	Diffraction,	Diffraction,	Diffraction,	Diffraction,	Diffraction,	Diffraction,	Sheldrick G.M. &
	2015) Empirical	2015) Empirical	2015) Empirical	2015) Empirical	2015) Empirical	2015) Empirical	Stalke D., J.
	absorption	absorption	absorption	absorption	absorption	absorption	Appl. Cryst. 48
	correction using	correction using	correction using	correction using	correction using	correction using	(2015) 3-10
	spherical	spherical	spherical	spherical	spherical	spherical	
	harmonics,	harmonics,	harmonics,	harmonics,	harmonics,	harmonics,	
	implemented in	implemented in	implemented in	implemented in	implemented in	implemented in	
	SCALE3 ABSPACK	SCALE3 ABSPACK	SCALE3 ABSPACK	SCALE3 ABSPACK	SCALE3 ABSPACK	SCALE3 ABSPACK	
	scaling	scaling	scaling	scaling	scaling	scaling	
	algorithm.	algorithm.	algorithm.	algorithm.	algorithm.	algorithm.	
T _{min} , T _{max}	0.558, 1.000	0.870, 1.000	0.808, 1.000	0.851, 1.000	0.850, 1.000	0.843, 1.000	0.638, 0.746
No. of measured,	6888, 3298,	12427, 5588,	5525, 3053,	7099, 1745,	7789, 4028,	10249, 5184,	25560, 8388,
independent and	2682	5025	2623	1330	3375	4267	7365
observed [/ > 22(/)]							
reflections							
	0.022	0.020	0.026	0.026	0.026	0.024	0.026
<i>R</i> _{int}	0.032	0.028	0.026	0.026	0.026	0.034	0.026
I values (°)	? _{max} = 29.0, ? _{min}	? _{max} = 25.7, ? _{min}	? _{max} = 29.0, ? _{min}		? _{max} = 25.7, ? _{min}		? _{max} = 30.5, ? _{min}
	= 2.2	= 2.2	= 2.5	= 2.6	= 1.9	= 1.9	= 2.3
(sin ।	0.682	0.610	0.682	0.680	0.610	0.683	0.715
Banga of h k l	b = 0012 k =		b = 0010 k =	h = 14010 k =	b = 1100 k =	h = 11010 k =	h = 12012 k =
	11 – -9115, K – -	1 20130, K	$119 \le 10, K$	$1114 \pm 10, K$	12012 /-		112012, K
	12112, 7 = -	10110, / = -101/	9110, 7 = -10114	/113,/=-28131	13113, / = -	11015,7 = -	10110, / = -
	23223				13213	14214	19119
$R[F^2 > 2\mathbb{P}(F^2)], wR(F^2), S$	0.040, 0.089,	0.069, 0.151,	0.031, 0.060,	0.054, 0.157,	0.040, 0.082,	0.035, 0.072,	0.023, 0.054,
	1.05	1.20	1.03	1.09	1.03	1.01	1.06
No. of rofloations	2208 174 0		2052 172 0	1745 100 2	4028 254 0	F194 373 0	0000 000 1
NO. OF REFLECTIONS,	3298, 174, 0	5588, 355, U	3053, 172, 0	1/45, 100, 2	4028, 254, 0	5184, 272, 0	ŏ 388, 338, 1
parameters, restraints							
H-atom treatment	H atoms treated	H-atom	H atoms treated	H atoms treated	H-atom	H-atom	H atoms treated
	by a mixture of	parameters	by a mixture of	by a mixture of	parameters	parameters	by a mixture of

	independent and constrained refinement	constrained	independent and constrained refinement	independent and constrained refinement	constrained	constrained	independent and constrained refinement
	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.035P)^{2} + 0.9211P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0061P)^{2} + 111.3673P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0189P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0625P)^{2} + 21.0843P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0234P)^{2} + 3.2727P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0244P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0222P)^{2} + 0.3077P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
₽₽ _{max} , ₽₽ _{min} (e Å⁻³)	1.39, -1.44	3.53, -1.35	0.77, -1.19	1.44, -1.56	1.88, -1.03	1.05, -1.15	0.54, -0.49

	8	9	10	11	12	13	14
Chemical formula	$\begin{array}{c} C_{37.33}H_{40}Cl_{2.67}Cu_{2}I\\ \\ 2.67}N_{4}O_{4}\end{array}$	$C_{48}H_{28}Cu_4I_8N_4O_{12}$	$C_{52}H_{36}Cu_4I_8N_4O_{12}$	$C_{52}H_{36}Cu_4I_8N_4O_{12}$	$C_{56}H_{44}Cu_4I_8N_4O_{12}$	$C_{13}H_9CuI_2NO_3$	$C_{15}H_{12}Cul_2N_2O_3$
<i>M</i> _r	1168.74	2122.10	2178.21	2178.21	2234.31	544.55	585.61
Crystal system, space group	Monoclinic, C2/c	Tetragonal, I4 ₁ /a	Monoclinic, P2 ₁ /c	Orthorhombic, P2 ₁ 2 ₁ 2 ₁			
Temperature (K)	150	150	140	150	150	150	150
a, b, c (Å)	32.1635 (10), 7.9649 (2), 29.8771 (10)	16.9289 (4), 16.9289 (4), 19.3081 (6)	17.3463 (3), 17.3463 (3), 19.8722 (5)	17.7967 (6), 17.7967 (6), 19.2988 (9)	17.7012 (4), 17.7012 (4), 20.5023 (8)	9.9896 (5), 7.2980 (3), 20.0687 (10)	5.2711 (7), 14.3697 (17), 23.766 (3)
α, β, γ (°)	90, 123.487 (5), 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90	90, 90.958 (2), 90	90, 90, 90
V (Å ³)	6383.4 (5)	5533.5 (3)	5979.4 (3)	6112.4 (5)	6424.0 (4)	1462.89 (12)	1800.1 (4)
Z	6	4	4	4	4	4	4
	3.14	6.04	5.60	5.47	5.21	5.72	4.66
Crystal size (mm)	0.30 × 0.10 × 0.10	0.07 × 0.07 × 0.06	0.30 × 0.20 × 0.20	0.12 × 0.10 × 0.08	0.16 × 0.06 × 0.02	0.10 × 0.05 × 0.05	0.11 × 0.08 × 0.08
Diffractometer	New Xcalibur, AtlasS2	Bruker D8 Venture	New Xcalibur, AtlasS2	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture

		diffractometer		diffractometer	diffractometer	diffractometer	diffractometer
Absorption correction	Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan CrysAlis PRO 1.171.38.41 (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10	Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10
T _{min} , T _{max}	0.927, 1.000	0.639, 0.746	0.933, 1.000	0.540, 0.746	0.568, 0.746	0.606, 0.746	0.582, 0.745
No. of measured, independent and observed [/ > 2⊡(/)] reflections	22785, 6064, 5445	73022, 4601, 4149	12871, 2839, 2585	46730, 4683, 4011	33846, 4515, 3719	26748, 4490, 3804	14513, 2850, 2327
R _{int}	0.021	0.036	0.024	0.051	0.031	0.042	0.102
☑ values (°)	? _{max} = 25.7, ? _{min} = 2.5	? _{max} = 31.5, ? _{min} = 2.4	? _{max} = 25.7, ? _{min} = 2.4	? _{max} = 30.5, ? _{min} = 2.3	? _{max} = 29.6, ? _{min} = 1.5	? _{max} = 30.6, ? _{min} = 2.0	? _{max} = 24.4, ? _{min} = 2.2
(sin ₽/₽) _{max} (Å⁻¹)	0.610	0.735	0.610	0.715	0.695	0.716	0.582
Range of <i>h</i> , <i>k</i> , <i>l</i>	h = -38239, k = - 926, l = -36233	h = -24224, k = - 24224, l = - 28228	h = -21217, k = - 21217, l = - 23224	h = -25225, k = - 25225, l = - 26227	h = -21224, k = - 21224, l = - 27228	h = -14214, k = - 10210, l = - 28228	h = -625, k = - 16216, / = - 27227
$R[F^2 > 2\mathbb{P}(F^2)], wR(F^2), S$	0.035, 0.079, 1.05	0.026, 0.060, 1.08	0.062, 0.119, 1.16	0.033, 0.088, 1.02	0.035, 0.089, 1.18	0.052, 0.124, 1.17	0.041, 0.088, 0.95
No. of reflections	6064	4601	2839	4683	4515	4490	2850
No. of parameters	359	172	181	182	190	181	208

No. of restraints	0	0	0	0	0	0	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0252P)^{2} + 47.3496P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0199P)^{2} + 22.4482P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + 259.3857P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0421P)^{2} + 25.9649P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0223P)^{2} + 58.3205P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2}) + (0.0284P)^{2} + 18.7285P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\mathbb{P}^{2}(F_{o}^{2})]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
?? _{max} , ?? _{min} (e Å⁻³)	2.88, -1.82	2.14, -1.36	2.72, -3.04	2.78, -1.21	1.74, -0.88	3.79, -1.62	0.55, -0.57
Absolute structure	_	?	?	?	?	_	Flack x determined using 780 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	_	?	?	?	?	-	0.02 (5)

Computer programs: *CrysAlis PRO* 1.171.38.41 (Rigaku OD, 2015), *APEX3* (Bruker-AXS, 2016), *SAINT* (Bruker-AXS, 2016), *SHELXS2014* (Sheldrick, 2014), *SHELXT* 2014/5 (Sheldrick, 2014), *SHELXL2014* (Sheldrick, 2014), *SHELXL2017*/1 (Sheldrick, 2017), ShelXle (Hübschle, 2011), CIFTAB-2014 (Sheldrick, 2014).

Figure 2S. Calculated and experimental PXRD patterns for 2

Figure 3S. Calculated and experimental PXRD patterns for 3

Figure 4S. Calculated and experimental PXRD patterns for 5

Figure 6S. Calculated and experimental PXRD patterns for 7

Figure 7S. Calculated and experimental PXRD patterns for 8

Figure 8S. Calculated and experimental PXRD patterns for 9

Figure 10S. Calculated and experimental PXRD patterns for 13

Figure 11S. Temperature dependencies of μ_{eff} (•) and $1/\chi$ (**n**) for the complexes **1** (a) and **2** (b). Solid lines are theoretical curves.

Figure 12S. Temperature dependencies of μ_{eff} for the complexes 11 (a) and 13 (b). Solid lines are theoretical curves.

Figure 14S. TGA data for 3

Figure 15S. TGA data for 5

Figure 16S. TGA data for 6

Figure 19S. TGA data for 9

Figure 21S. TGA data for 12

Figure 22S. TGA data for 13