Supporting Information

Anchored RuSe₂ Nanospheres on Co-N-C Nanosheets Boost Electrocatalytic Alkaline Hydrogen Evolution

Nan Li,*a Minghao Shi, Wei Zhan, Wenjing Shen, Mianmian Wu, Guifang Sun,

Qingfei Li,^a and Jiangquan Ma*a

Jiangsu Province Advanced Catalysis and Green Manufacturing Collaborative

Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164,

China.

*Corresponding author

Tel: +86 13951221008, E-mail: majiangquan@126.com

Fig. S1. XPS spectra of Co-N-C. (a) Survey scan, (b) Co 2p , (c) C 1s and (d) N 1s spectrum.

Fig. S2. Ru 3p spectra of RuSe₂/Co-N-C-5 and RuSe₂/N-C-5.

Fig. S3. HER performance of different catalysts in 1.0 KOH. (a) Polarization curves,(b) Tafel slopes, (c) EIS curves and (d) double-layer capacitance (C_{dl}).

Fig. S4. CV curves of (a) Co-N-C, (b) Fresh RuSe₂, (c) RuSe₂-400, (d) Fresh RuSe₂/Co-N-C-5, (e) RuSe₂/Co-N-C-2, (f) RuSe₂/Co-N-C-5, (g) RuSe₂/Co-N-C-10, (h) RuSe₂/Co-N-C-15 and (i) RuSe₂/N-C-5 at different scan rates.

Catalyst	Substrate	Tafel slope (mV dec ⁻¹)	Overpotential (mV@10 mA cm ⁻ ²)	Ref
RuSe ₂ /g-C ₃ N ₄	GC	74.8	95	S 1
RuSe ₂ @NC	GC	32	30	S2
<i>h</i> -RuSe ₂	GC	95	34	S3
RuSe ₂ -500	GC	53	29	S4
RuSe ₂ /CNTs	GC	80	48	S5
Pt @CoS	GC	31	28	S6
Pt-Co/CoO _x	GC	29.3	28	S7
PtNi-NC-900	GC	43.2	37.4	S 8
Pt/MXene	GC	29.7	34	S9
MoS ₂ -NTA	AAO	35	32	S10
Pt-PdO/C	GC	36	29	S11
RuSe ₂ /Co-N-C-5	GC	53.2	26.4	This

Table S1. Comparison of HER performance for RuSe2/Co-N-C-5 in this work andrecently reported HER electrocatalysts in 1 M KOH.

Supplementary References

S1. Y. Che, B. Lu, H. Chen, J. Zhai, K. Wang, H. Chang and Z. Liu, ACS Applied Energy Materials, 2022, 5, 6080-6090.

S2. D. Chen, R. Lu, Y. Yao, D. Wu, H. Zhao, R. Yu, Z. Pu, P. Wang, J. Zhu, J. Yu, P.

Ji, Z. Kou, H. Tang and S. Mu, Journal of Materials Chemistry A, 2022, 10, 7637-7644.

S3. Y. Zhao, H. Cong, P. Li, D. Wu, S. Chen and W. Luo, Angewandte Chemie International Edition, 2021, **60**, 7013-7017.

S4. W. Zhan, N. Li, S. Zuo, Z. Guo, C. Qiang, Z. Lia and J. Ma, CrystEngComm, 2022,24, 620-627.

S5. D. Li, M. Zha, L. Feng, G. Hu, C. Hu, X. Wu and X. Wang, Nanoscale, 2022, 14, 790-796.

S6. A. Mosallanezhad, C. Wei, P. A. Koudakan, Y. Fang, S. Niu, Z. Bian, B. Liu, T.

Huang, H. Pan and G. Wang, Applied Catalysis B: Environmental, 2022, 315, 121534.

S7. Y. Wang, W. Wu, R. Chen, C. Lin, S. Mu and N. Cheng, 2022, 15, 4958–4964.

S8. J. Guo, J. Liu, X. Zhang, X. Guan, M. Zeng, J. Shen, J. Zou, Q. Chen, T. Wanga and D. Qian, Journal of Materials Chemistry A, 2022, 10, 13727-13734.

S9. Y. Wu, W. Wei, R. Yu, L. Xia, X. Hong, J. Zhu, J. Li, L. Lv, W. Chen, Y. Zhao, L.

Zhou and L. Mai, Advanced Functional Materials, 2022, 32, 2110910.

S10. S. Jiao, M. Kong, Z. Hu, S. Zhou, X. Xu and L. Liu, Small, 2022, 18, 2105129.

S11. R. Samanta, R. Mishra, S. Barman, ACS Sustainable Chemistry & Engineering, 2022, 10, 3704–3715.