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Supplementary Figures and Tables

Figure S1 The schematic crystal structures of all the titanium oxide and related phases involved 
in this work.



Table S1 Space groups and lattice parameters of involved titanium oxides and related phases

Phase Space Group Lattice Parameters

H2Ti3O7 C12/m1 a=16.023 Å, b=3.749 Å, c=9.19 Å, β=101.57°, α=γ=90°

TiO2 (B) C12/m1 a=12.208 Å, b=3.749 Å, c=6.535 Å, β=107.36°, α=γ=90°

Anatase I41/amd a=b=3.785 Å, c=9.515 Å, α=β=γ=90°

Rutile P42/mnm a=b=4.592 Å, c=2.957 Å, α=β=γ=90°

Ti8O15 P-1
a=5.53 Å, b=7.134 Å, c=13.401 Å, α=100.54°, β=96.57°, 

γ=108.51°

Ti5O9 P1
a=5.60 Å, b=7.120 Å, c=8.870 Å, α=97.60°, β=112.30°, 

γ=108.50°

Ti4O7 A-1
a=5.594 Å, b=7.122 Å, c=12.460 Å, α=95.05°, β=95.19°, 

γ=108.76°

λ-Ti3O5 C12/m1 a=9.752 Å, b=3.802 Å, c=9.442 Å, β=91.92°, α=γ=90°

γ-Ti3O5 I12/c1 a=9.969 Å, b=5.074 Å, c=7.182 Å, β=109.863°, α=γ=90°

Figure S2 Raman spectroscopy of PDA@H2Ti3O7 nanofiber precursor calcinated under 
different temperatures for 1 hour.



Figure S3 The STEM and corresponding EDX mapping characterization results of the 
PDA@H2Ti3O7 precursor calcinated at 1000 °C: (a) Second Electron Image (SEI); (b) STEM-
DF image; (c-e) Elemental mapping signal for C, Ti and O; (f) Overlay elemental mapping of 
the above 3 elements.



Figure S4 The schematic illustration of the formation process of the sheared structure in rutile.



Figure S5 The SAED patterns of TR/T5 dual phase nanofibers

Figure S6 The SAED patterns of λ-T3/γ-T3 dual phase nanofibers



Figure S7 The Bain orientation relationships between TR and T5 phase

Figure S8 The Bain orientation relationships between λ-T3 and γ-T3 phase

The detailed invariant line strain calculation process

As mentioned in the main text, the rotation axis u and angle θ when using Euler’s 

equation for rigid-body rotation can be determined as follows: 

                                       (S-1)

(𝑃2 ‒ 𝑃1) × (𝑄2 ‒ 𝑄1)

(𝑃2 + 𝑃1) ∙ (𝑄2 ‒ 𝑄1)
= 𝑢[𝑡𝑎𝑛𝜃

2]
Here, P1 and Q1 are the invariant unit vector in real and in reciprocal space, P2 and Q2 

are the corresponding invariant unit vector after the Bain deformation. Considering the 

initial lattice correspondence of TR/T5 and λ-T3/γ-T3 phase transformation systems, 



 and  are selected as the rotation axes. [001]𝑇𝑅//[201]𝑇5 [010]𝜆 ‒ 𝑇3//[111̅]𝛾 ‒ 𝑇3

Therefore, P1 can be chosen as  and  respectively. Under this [001]𝑇𝑅 [010]𝜆 ‒ 𝑇3

condition,  and  are identical to  in the reference coordination [001]𝑇𝑅 [010]𝜆 ‒ 𝑇3 [010]

system for TR/T5 and λ-T3/γ-T3 phase transformation systems. That is,

                    ,                (S-2)𝑃1 = [010] 𝑃2 = 𝐵 ∙ 𝑃1 = [0,𝜂2,0]

According to the Invariant Deformation Element model, Q1 must be perpendicular to 

P1. The following equations can be obtained:

                   ,              (S-3)𝑄1 = [ℎ0𝑙]
𝑄2 = 𝐵 ‒ 1 ∙ 𝑄1 = [ ℎ

𝜂1
,0,

𝑙
𝜂3

]
When applying , the relational expressions between k and l can be |𝑄1| = |𝑄2|

obtained:

                                                (S-4)
ℎ2 + 𝑙2 =

ℎ2

𝜂2
1

+
𝑙2

𝜂2
3

Considering the 2 phase transformation systems, the values of h and l can be calculated 

separately. Furthermore, , u and θ can also be calculated accordingly. Table S1 𝑄1

summarized the calculated results of the above parameters.
Table S1 The Bain strain matrix and several calculated parameters in TR/T5 and λ-T3/γ-T3 phase 

transformation systems
Phase 

Transformation 

System

Bain Strain Matrix h 𝑄1 u θ

TR/T5 (1.2462 0 0
0 0.9586 0
0 0 0.9956) 0.1577l [0.1577, 0, 1] [010] = [001]𝑇𝑅 -1.78°

λ-T3/γ-T3 (1.0939 0 0
0 0.9905 0
0 0 0.9704) 0.6139l [0.6139, 0, 1] [010] = [010]𝜆 ‒ 𝑇3 2.97°

Then the total strain matrix A can be written as:

                      (S-5)
𝐴 = 𝑅𝐵 = ( 𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
‒ 𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃)(𝜂1 0 0

0 𝜂2 0
0 0 𝜂3

)
Let , then we can obtain:(𝐴 ‒ 𝐼)𝑋 = 0



|𝐴 ‒ 𝐼|

= |( 𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

‒ 𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃)(𝜂1 0 0
0 𝜂2 0
0 0 𝜂3

) ‒ (1 0 0
0 1 0
0 0 1)| = (𝜂2 ‒ 1)[1 + 𝜂1𝜂3 ‒ (𝜂1 + 𝜂3)𝑐𝑜𝑠𝜃]

= 0

                                      (S-6)

The rotation angle θ can be obtained as:

                                                 (S-7)
𝑐𝑜𝑠𝜃 =

1 + 𝜂1𝜂3

𝜂1 + 𝜂3

In order to calculate the eigenvalue λi of the lattice deformation matrix, we let 

, then:|(𝐴 ‒ 𝜆𝐼)| = 0

     

|𝐴 ‒ 𝜆𝐼|

= |( 𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

‒ 𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃)(𝜂1 0 0
0 𝜂2 0
0 0 𝜂3

) ‒ (𝜆 0 0
0 𝜆 0
0 0 𝜆)| = (𝜆 ‒ 1)(𝜆 ‒ 𝜂1𝜂3)(𝜂2 ‒ 𝜆)

= 0

                                   (S-8)

Therefore, the three eigenvalues are determined to be λ1＝1, λ2=η1η3, λ3＝η2. 

Obviously, one of the eigenvalues always equals to 1. Hence, eigenvectors Vi of the 

matrix A can be calculated by letting AX = λX, then:
(𝐴 ‒ 𝜆𝐼)𝑋

= [( 𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

‒ 𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃)(𝜂1 0 0
0 𝜂2 0
0 0 𝜂3

) ‒ (𝜆 0 0
0 𝜆 0
0 0 𝜆)](𝑋

𝑌
𝑍) = ( (𝜂1𝑐𝑜𝑠𝜃 ‒ 𝜆)𝑋 + (𝜂3𝑠𝑖𝑛𝜃)𝑍

(𝜂2 ‒ 𝜆)𝑌
( ‒ 𝜂1𝑠𝑖𝑛𝜃)𝑋 + (𝜂3𝑐𝑜𝑠𝜃 ‒ 𝜆)𝑍)

= 0

                               (S-9)

After putting the calculated eigenvalues and rotation angles θ into (S-9), then we can 

obtain:

(1) If λ1＝1, then Y=0, and . Therefore, 

𝑋
𝑍

=
‒ 𝜂3𝑠𝑖𝑛𝜃

𝜂1𝑐𝑜𝑠𝜃 ‒ 1
=

𝜂3𝑐𝑜𝑠𝜃 ‒ 1

𝜂1𝑠𝑖𝑛𝜃
=

1 ‒ 𝜂2
3

𝜂2
1 ‒ 1

.
𝑉1 = [1,0,

1 ‒ 𝜂2
3

𝜂2
1 ‒ 1

.]



(2) If λ2＝η1η3, then Y=0, and . 

𝑋
𝑍

=
‒ 𝜂3𝑠𝑖𝑛𝜃

𝜂1𝑐𝑜𝑠𝜃 ‒ 𝜂1𝜂3
=

𝜂3𝑐𝑜𝑠𝜃 ‒ 𝜂1𝜂3

𝜂1𝑠𝑖𝑛𝜃
=

𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3

Therefore, .
𝑉2 = [1,0,

𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3
]

(3) If λ3＝η2, then Y can be assigned to any real number, and X=Z=0, .𝑉3 = [010]

The eigenplanes determined by the three eigenvectors are:

                    (S-10)

𝐹1 = |
𝑖 𝑗 𝑘

1 0
1 ‒ 𝜂2

3

𝜂2
1 ‒ 1

1 0
𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3

| = (0,
𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3

‒
1 ‒ 𝜂2

3

𝜂2
1 ‒ 1

,0)

                              (S-11)

𝐹2 = | 𝑖 𝑗 𝑘

1 0
1 ‒ 𝜂2

3

𝜂2
1 ‒ 1

0 1 0
| = ( ‒

1 ‒ 𝜂2
3

𝜂2
1 ‒ 1

,0,1)

                         (S-12)

𝐹3 = | 𝑖 𝑗 𝑘

1 0
𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3

0 1 0
| = ( ‒

𝜂3

𝜂1

𝜂2
1 ‒ 1

1 ‒ 𝜂2
3

,0,1)


