Supporting Information for

Revealing the order-disorder type phase transition mechanism in two new supramolecular clathrates

Wen-Juan Wei,*^{ab} Hong-Qiang Gao,^a Ming Fang,*^a Yun-Zhi Tang^b and Yen Wei*^a

EXPERIMENTAL SECTION

Synthesis. All the reagents and solvents used were of commercially available quality. **1** and **2** was obtained by slow evaporation of a solution of mixed methanol solution (10 mL) containing nortropine (1 mmol, 0.130 g), 18-crown-6 (1 mmol, 0.264 g) and perchloric acid or tetrafluoroborate acid (1 mmol) at room temperature. The large colorless block single crystals of **1** and **2** were obtained after about 2 weeks.

Powder X-ray diffraction. Room temperature powder X-ray diffraction (PXRD) experiments of **1** and **2** were performed on a Rigaku D/MAX 2000 PC X-ray diffraction instrument with Cu radiation ($K_{\alpha 1}$ =1.54060 Å, $K_{\alpha 2}$ =1.54443 Å). Variable temperature PXRD experiments of **1** and **2** were carried out on a Brucker D8 Discovery diffractometer with Cu radiation ($K_{\alpha 1}$ =1.54060 Å, $K_{\alpha 2}$ =1.54443 Å). The data were collected in the temperature range 298-445 K for θ range from 5 to 70°.

Figure S1. Patterns of the powder X-rays diffraction (PXRD) and simulated ones from the singlecrystal structures of **1** at 298, 400 and 445 K.

Figure S2. Patterns of the powder X-rays diffraction (PXRD) and simulated ones from the singlecrystal structures of **2** at 298 K (a), 373 K (b) and 393 K (c) high-temperatures. The PXRD patterns matches very well the patterns simulated from the single-crystal structures.

DSC and TGA. Differential scanning calorimetry (DSC) measurements were conducted using a TA Q2000 DSC instrument. The DSC runs were recorded on cooling and on heating the powdered sample at the rate of temperature changes of 10 K/min. Indium standard was used for the temperature and enthalpy calibration. Thermogravimetric analysis (TGA) measurement was performed on a TA-Instruments STD2960 system from room temperature to 1050 K in nitrogen atmosphere at a rate of 10 K/min (Figure S3), indicating that **1** and **2** can be stable up to 453 K and 423 K when a dehydration process occurs.

Figure S3. The thermogravimetric analysis of 1 (a) and 2 (b) in the range of 300-1050 K.

Single Crystal X-ray Diffraction. Single crystal X-ray diffractions were carried out with graphite monochromated Mo radiation ($\lambda = 0.71073$ Å) on an Oxford Diffraction Gemini E Ultra diffractometer. Data sets were collected by using *CrysAlis*^{Pro} software. The program Olex2-1.2 was employed as an interface to invoke program SHELXS97 and SHELXL97 executables.¹ The crystal structures were solved by direct methods with SHELXS97 and refined by full-matrix least squares on F^2 with anisotropic atomic displacement parameters for all non-hydrogen atoms using SHELXL97.^{2, 3} All H atoms were located from molecular geometric calculations and refined with isotropic temperature parameters. The crystallographic information of **1** and **2** crystal structures were listed in the Table S1. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data request/cif (CCDC 2203857-2203862).

Table S1. Crystal data and structure refinement details for **1** at 200, 300, 365 K and **2** at 173, 293, 350 K, respectively. The crystal data of **2** at 373.15 K are refined from the corresponding high-temperature powder X-rays diffraction.

Crystal	1 (LTP)	1 (LTP)	1 (LTP)	2 (LTP)	2 (RTP)	2 (RTP)	2 (HTP)
Empirical	$C_{19}H_{38}Cl$	C ₁₉ H ₃₈ ClNO ₁	C ₁₉ H ₃₈ ClNO ₁	C ₁₉ H ₃₈ BF ₄ NO	C19H38BF4NO	C ₁₉ H ₃₈ BF ₄ NO	C ₁₉ H ₃₈ BF ₄ NO
Formula weight	491.95	491.95	491.95	479.31	479.31	479.31	479.31
Crystal system	orthorho	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	Pbca	Pbca	Pnma	Pbca	Pbca	Pbca	Pnma
Temperature (K)	200.04(1	300.00(10)	365.01(11)	173.00(10)	300.80(10)	350(2)	373.15(2)
<i>a</i> / Å	17.1801(17.3155(8)	15.6730(17)	17.1067(7)	17.2870(6)	17.3460(16)	17.1726
<i>b</i> / Å	15.4816(15.6324(9)	10.8757(9)	15.3661(7)	15.6308(5)	15.8138(15)	15.8594
<i>c</i> / Å	17.8001(17.8689(9)	14.2780(15)	17.6923(8)	17.7593(6)	17.7610(20)	17.5853
α / \circ	90	90	90	90	90	90	90
β / °	90	90	90	90	90	90	90
γ/°	90	90	90	90	90	90	90
$V/~{ m \AA}^3$	4734.4(2	4836.8(4)	2433.8(4)	4650.7(4)	4798.7(3)	4872.0(8)	4789.3
Z	8	8	4	8	8	8	4
ho / g cm ⁻³	1.380	1.351	1.343	1.369	1.327	1.307	-
μ / mm ⁻¹	0.219	0.215	0.213	0.121	0.117	0.115	-
GOF on F^2	1.049	1.025	2.479	1.028	1.069	0.834	-

$R_1, [I > 2\sigma(I)]^a$	0.0383	0.0579	0.2497	0.0477	0.0557	0.1044	-
$wR_2, [I > 2\sigma(I)]^b$	0.0986	0.1759	0.6590	0.1089	0.1751	0.3211	-
$R_1 = \sum F - F / \sum I $	$F \mid b_W R_2 = \{$	$\Sigma[w(F^2 - F^2)^2]/2$	$\Sigma[w(F^2)^2]$ 1/2				

Figure S4. (a) Asymmetric units of **1** in the disordered structure of Low-temperature phase at 200 K. Dashed lines represent hydrogen bonds N–H^{...}O. (b) The crystallographic packing diagrams of **1** viewed along the *c*-axis. Hydrogen atoms bonded to the C atoms were omitted for clarity. Dashed lines represent hydrogen bonds N–H^{...}O and O–H^{...}O.

Figure S5. (a) Asymmetric units of **2** in the disordered structure of Low-temperature phase at 350 K. Dashed lines represent hydrogen bonds N–H···O. (b) The crystallographic packing diagrams of **2** viewed along the *c*-axis in the LTP at 350 K. Hydrogen atoms bonded to the C atoms were omitted for clarity. Dashed lines represent hydrogen bonds N–H···O and O–H···O.

Figure S6. The crystallographic packing diagrams of 1 viewed along the *c*-axis in the LTP at 200 K (a), RTP at 293 K (b) and ITP at 365 K (c). Hydrogen atoms bonded to the C atoms were omitted for clarity. Dashed lines represent hydrogen bonds N-H...O and O-H...O.

Figure S7. The crystallographic packing diagrams of **2** viewed along the *c*-axis in LTP at 173 K (a), RTP at 293 K (b) and at 350 K (c). Hydrogen atoms bonded to the C atoms were omitted for clarity. Dashed lines represent hydrogen bonds N–H…O and O–H…O.

Figure S8. The conformational change of crown ether (a) and NRT (b) moiety in phase-I (carmine) and phase-III (gray) of **1** by providing an overlapping molecular image using mercury program.

IR and Raman spectroscopy characterization. IR spectra of the title compound were recorded on a Perkin-Elmer spectrum 2000 operating at 4 cm⁻¹ resolution. Variable-temperature Raman measurements were carried out in a HORIBA equipped with a 50× (0.75 N.A.) objective with an excitation wavelength of 532 nm using a laser power < 0.1 mW to avoid the damage of the samples during the measurement.

Figure S9. IR spectrum of **1**. The main peaks at 2894 are tentatively assigned the δ (CH₂) and at 1078 cm⁻¹ are tentatively assigned the *v*(ClO₄) and *v*(C-O).

Figure S10. Calculated IR spectrum and Raman spectra of **1**. The main peaks at 2894 cm⁻¹ are tentatively assigned the δ (CH₂) and at 1078 cm⁻¹ are tentatively assigned the ν (ClO₄) and ν (C-O). **Table S2.** Measured and calculated vibration wavenumbers (cm⁻¹) of **1** and proposed assignments of the observed Raman and IR bands.

Observed wavenumbers (cm ⁻¹)		Calculated wavenumbers (cm ⁻¹)	Proposed assignments
Raman	IR		
77	-	65	au (CH ₂) twisting
159	-	143	$\omega(\mbox{C-O-C})$ wagging, $\ \omega(\mbox{CH}_2)$ wagging
223	-	198	$\omega(\text{C-O-C})$ wagging
268	-	255	$\omega(\mathrm{CH_2})$ wagging
326	-	325	$\omega(\mathrm{CH_2})$ wagging
383	-	389	$\omega(\mathrm{CH}_2)$ wagging
404	-	432	ω (Cl-O) wagging
459	-	447	$\omega(\mathrm{CH_2})$ wagging
524	-	523	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging
568	-	581	$\delta(\text{C-O})$ stretching
585	-	594	(C-O-C) bending
625	-	642	$\omega({\rm OH})$ wagging
757	753	752	τ (CH ₂) twisting
791	788	784	au (CH ₂) twisting
809	816	815	au (CH ₂) twisting
830	834	825	au (CH ₂) twisting
869	866	873	$\omega(\mathrm{CH_2})$ wagging
889	887	889	ω (NH ₂) wagging
910	909	906	$\omega({\rm CH_2})$ wagging, $~\omega({\rm NH_2})$ wagging
934	931	927	δ (CIO) stretching, ω (CH ₂) wagging, ω (NH ₂) wagging
979	976	985	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging
1025	1021	1024	δ (C-C) stretching

1091	1077	1075	$p(ClO_4)$ rocking
1124	1121	1120	$\omega(\mathrm{CH}_2)$ wagging
1140	1136	1139	$\omega(\mathrm{CH}_2)$ wagging, $\delta(\mathrm{C-O})$ stretching
1153	1173	1166	$\omega({ m CH_2})$ wagging, $\omega({ m NH_2})$ wagging
1200	1194	1181	$ au$ (CH ₂) twisting, δ (ClO) stretching
1216	-	1212	$\omega(\mathrm{CH_2})$ wagging
1245	1245	1147	$\omega(\mathrm{CH}_2)$ wagging
1276	1272	1277	au (CH ₂) twisting
1287	1303	1294	$\omega(\mathrm{CH}_2)$ wagging
1309	1354	1345	au (CH ₂) twisting
1439	1412	1412	δ (CH ₂) scissoring
1464	-	1436	$\delta(\mathrm{CH_2})$ scissoring, $\omega(\mathrm{NH_2})$ wagging
1474	1464	1470	δ (CH ₂) scissoring
1486	-	1491	δ (CH ₂) scissoring
1527	-	1514	δ (CH ₂) scissoring
2966	2958	2960	$\delta(\mathrm{CH}_2)$ stretching
2980	-	2981	$\delta(\mathrm{CH}_2)$ stretching
2995	-	2998	$\delta(\mathrm{CH}_2)$ stretching
3013	-	3023	$\delta(\mathrm{CH}_2)$ stretching
3037	-	3037	$\delta(\mathrm{CH}_2)$ stretching
3071	3071	3123	$\delta(\mathrm{CH}_2)$ stretching
3522	3475	3429	$\omega(\mathrm{NH_2})$ stretching
3739	3736	3747	v(OH) stretching

Figure S11. IR spectrum of **2**. The main peaks at 2895 cm⁻¹ are tentatively assigned the δ (CH₂) and at 1045 cm⁻¹ are tentatively assigned the *v*(BF₄) and *v*(C-O). Notation used: δ , stretching, *v*, vibrations.

Figure S12. Calculated IR spectrum and Raman spectra of **2**. The main peaks at 2895 cm⁻¹ are tentatively assigned the δ (CH₂) and at 1045 cm⁻¹ are tentatively assigned the *v*(BF₄) and *v*(C-O). Notation used: δ , stretching, *v*, vibrations.

Observed wavenumbers (cm ⁻¹)		Calculated wavenumbers (cm ⁻¹)	Proposed assignments	
Raman	IR			
76	-	77	au (CH ₂) twisting	
107	-	109	τ (CH ₂) twisting	
167	-	169	$\omega(\mbox{C-O-C})$ wagging	
265	-	268	$\omega(\mathrm{CH_2})$ wagging	
322	-	323	$\omega(\mathrm{CH_2})$ wagging	
379	-	370	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging	
486	-	450	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging	
524	-	524	$ ho(\mathrm{BF_4})$ rocking	
566	-	546	ω (CH ₂) wagging	
585	-	583	(C-O-C) bending	
631	-	655	ω (OH) wagging	
725	721	752	au (CH ₂) twisting	
766	789	760	δ (B-F) stretching	
789	815	816	au (CH ₂) twisting	
832	833	827	au (CH ₂) twisting	
870	865	872	$\omega(\mathrm{CH_2})$ wagging	
887	887	890	δ (C-N) stretching	
911	909	912	ω (CH ₂) wagging, δ (C-C) stretching	
933	953	927	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging	
979	976	985	$\omega(CH_2)$ wagging, $\omega(NH_2)$ wagging	
1022	1021	1021	$\delta(\text{C-C})$ stretching, $\omega(\text{BF})$ wagging	
1047	1045	1060	$\omega(BF)$ wagging, $\omega(NH_2)$ wagging	
1090	1090	1091	$\omega(CH_2)$ wagging, $\omega(NH_2)$ wagging	
1124	1120	1123	$\omega(\mathrm{CH}_2)$ wagging	
1140	1136	1141	$\omega(\mathrm{CH_2})$ wagging, $\delta(\text{C-O})$ stretching	
1152	-	1159	$\omega(\mathrm{CH_2})$ wagging, $\omega(\mathrm{NH_2})$ wagging	
1177	1174	1178	τ (CH ₂) twisting, τ (NH ₂) twisting	
1196	1194	1197	$\omega(\mathrm{CH}_2)$ wagging, $\delta(\mathrm{BF})$ stretching	
1245	1246	1145	δ (C-O) stretching	
1274	-	1276	au (CH ₂) twisting	
1285	1281	1287	$\omega(\mathrm{CH}_2)$ wagging	
1306	1306	1308	$\omega(\mathrm{CH_2})$ wagging	
-	1354	1347	τ (CH ₂) twisting, δ (C-O) stretching	
1411	1413	1412	$\omega(\mathrm{CH}_2)$ wagging	
1453	-	1453	$\delta(\mathrm{CH}_2)$ scissoring	
1463	1466	1461	$\delta(\mathrm{CH_2})$ scissoring, $\omega(\mathrm{NH_2})$ wagging	
1474	1475	1474	$\delta(\mathrm{CH}_2)$ scissoring	
1486	1487	1491	$\delta(\mathrm{CH_2})$ scissoring	
1527	-	1514	δ (CH ₂) scissoring	

Table S3. Measured and calculated vibration wavenumbers (cm^{-1}) of **2** and proposed assignments of the observed Raman and IR bands.

2965	-	2981	δ (CH ₂) stretching
2997	3002	2996	$\delta(\mathrm{CH}_2)$ stretching
3018	-	3020	δ (CH ₂) stretching
3041	-	3040	δ (CH ₂) stretching
3077	3074	3078	$\delta(\mathrm{CH}_2)$ stretching
3139	3138	3138	$\omega(\mathrm{NH}_2)$ stretching
3247	3242	3248	$\omega(\mathrm{NH}_2)$ stretching
3512	3511	-	$\omega(\mathrm{NH}_2)$ stretching
3724	3724	3725	δ (OH) stretching
3786	3784	3786	δ (OH) stretching

Figure S13. Temperature-dependent Raman spectra for **1** (a) and **2** (b) crystals in the range from 60 to 3900 cm⁻¹. The white dashed line indicates the phase transition location.

Figure S14. Raman spectra in the 60-3900 cm⁻¹ region for 1 (a) and 2 (b) at different temperature.

Figure S15. Raman modes for **1** (a) and **2** (b) at different temperature. Notation used: δ , stretching, β , bending; τ , twisting; ω , wagging, and ν , other vibrations.

Figure S16. The powder X-ray diffraction of 2 at 430 K.

References

- 1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- 2. G. Sheldrick, *SHELXL-97, program for X-ray crystal structure refinement. University of Göttingen, Germany Göttingen*, 1997.
- 3. A. SIR92, Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, MC Burla, G. Polidori, MJ Camalli, J. Appl. Crystallogr., 1994, **27**, 435-436.