Supporting Information

Enhancing stability of Metal–Organic Framework via ligand

modification: scalable synthesis and highly selectivity of CO₂ sorption

property

Di-Ming Chen*, Xue-Jing Zhang

Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China

Fig S1. The location of NO_3^- in the framework of 1.

Fig S2. The coordination environment of the Cu^{2+} ions in the tetranuclear copper cluster (Symmetry code A: 1–x, –y, 1–z).

Fig S3. The schematic representation of the formation of the double-walled structure of 2.

Fig S4. The TG curves for the single-walled 1 and double-walled 2.

Fig S5. Powder X-ray diffraction (PXRD) patterns of 1: pattern simulated from single-crystal structure in black, experimental pattern for the as-synthesized sample in red, experimental pattern for the activated sample in blue.

Fig S6. Variable temperature PXRD pattern of double-walled 2.

Fig S7. PXRD patterns of 2: pattern simulated from single-crystal structure in red, experimental pattern for the as-synthesized sample in black, experimental pattern for the sample soaked in H_2O in blue. Insert photos for 2 as synthesized and soaked in H_2O .

Fig S8. PXRD patterns of **2**: pattern simulated from single-crystal structure in red, experimental pattern for the as-synthesized sample in black, experimental pattern for the sample soaked in CH₃COOH in blue. Insert photos for **2** as synthesized and soaked in CH₃COOH.

Fig S9. PXRD patterns of **2**: pattern simulated from single-crystal structure in red, experimental pattern for the as-synthesized sample in black, experimental pattern for the sample soaked in $N(CH_2CH_3)_3$ in blue. Insert photos for **2** as synthesized and soaked in $N(CH_2CH_3)_3$.

Fig S10. PXRD patterns of 2: pattern simulated from single-crystal structure in red, experimental pattern for the as-synthesized sample in black, experimental pattern for the sample soaked in boiling water in blue.

Fig S11. The 195 K CO₂ sorption isotherm and 77 K N_2 sorption isotherm of 2'.

Fig S12. H_2 adsorption isotherms of 1 and 2.

Fig S13. CO₂ sorption isotherms of 2' and 2' in boiling water for 24 h.

Calculations of CO₂/CH₄ and CO₂/N₂ selectivities based on IAST

The experimental isotherm data on pure component for CO_2 , N_2 and CH_4 were measured at temperatures of 273 and 298 K, which were fitted by single-site-Langmuir–Freundlich model (SSLF):

$$y = \frac{abx^{1-c}}{1+bx^{1-c}}$$

The adsorption selectivities for binary mixtures of CO_2/CH_4 and CO_2/N_2 , defined by

$$S_{i/j} = \frac{x_i^* y_j}{x_i^* y_i}$$

were respectively calculated using the Ideal Adsorption Solution Theory (IAST). Where xi is the mole fraction of component i in the adsorbed phase and yi is the mole fraction of component i in the bulk.

Fig. S14 single site Langmuir–Freundlich fitting for the sorption data of 2'.

Calculation of sorption heat for CO₂ uptake using Virial model:

$$\ln P = \ln N + 1 / T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \qquad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above equation was applied to fit the combined CO₂ isotherm data for **2'** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S15 CO₂ adsorption isotherms for 2' with fitting by Virial model.

Fig S16. The experimental and simulated sorption isotherms of 2'.

	1	2	2(after Sorption)
Empirical formula	C48H58ClCu4N19O24	$C_{48}H_{56}Cu_4N_{18}O_{24}$	C40H32Cu4N14O18
Formula weight	1571.72	1523.25	1250.95
Temperature/K	293(2)	120(2)	298(3)
Crystal system	tetragonal	orthorhombic	orthorhombic
Space group	I4/mmm	Pban	Pban
a, Å	23.862(3)	13.7089(4)	26.3697(17)
b, Å	23.862(3)	26.6171(6)	13.4790(12)
c, Å	7.2102(14)	15.8127(4)	15.7382(6)
a (deg)	90.00	90.00	90.00
β(deg)	90.00	90.00	90.00
γ(deg)	90.00	90.00	90.00
V, Å ³	4105.5(11)	5769.9(3)	5593.9(7)
Z	2	4	4
$\rho_{calc}\!\!/mgmm^3$	0.994	1.334	1.412
μ/mm^{-1}	1.105	1.517	1.569
collected/unique	3327/1079	14848/5093	16485/4935
GOF on F ²	1.175	1.105	1.150
$R_1/wR_2 [I > 2\sigma(I)]$	0.0648, 0.1859	0.0550,0.1521	0.1254, 0.3315
R_1/wR_2 (all data)	0.0705, 0.1957	0.0620,0.1569	0.1414, 0.3427
diff. peak/hole	1.92/-0.63	1.10/-0.49	1.63/-1.27

Table S1. Crystal data and structure refinement.