Supporting Information

Double Butterfly-shaped Octanuclear Dysprosium Cluster:

Structure, Magnetism and Assembly Mechanism

Yun-Lan Li,^a Zhong-Ming Huang,^a Hai-Ling Wang,^a Zhong-Hong Zhu,^{a,*} Fu-Pei Liang,^a and Hua-Hong Zou^{a,*}

^aSchool of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China

*E-mail (Corresponding author): 18317725515@163.com (Z.-H. Zhu), gxnuchem@foxmail.com (H.-H. Zou).

Table of Contents:

Supporting Tables				
Table S1	Crystallographic data of clusters 1 and 2 .			
Table S2	Selected bond lengths (Å) and angles (°) of clusters 1 and 2 .			
Table S3	SHAPE analysis of the Dy1 in the clusters 1 and 2.			
Table S4	SHAPE analysis of the Dy2 in the clusters 1 and 2.			
Table S5	SHAPE analysis of the Dy3 in the clusters 1 and 2.			
Table S6	SHAPE analysis of the Dy4 in the clusters 1 and 2.			
Table S7	Parameters from the fitting result of the Cole-Cole plots for the cluster 1 under 0 Oe field.			
Table S8	Parameters from the fitting result of the Cole-Cole plots for the cluster 2 under 0 Oe field.			
Table S9	Selected parameters from the fitting result of the Cole-Cole plots for cluster 1 under 0 Oe fields.			
	Supporting Figures			
Figure S1	IR spectra of clusters 1 and 2.			
Figure S2	Thermogravimetric (TG) curves of clusters 1 and 2 .			
Figure S3	Powder X-ray diffraction patterns (PXRD) of clusters 1 and 2 .			
Figure S4	Loop curve graph of clusters 1 and 2 at 2 K.			
Figure S5	Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities at different frequencies in the 0 Oe dc fields for clusters 1 (a) and 2 (b).			
Figure S6	(a and b) Cole-Cole for clusters 1 and 2 ; (c) Plots of $\ln(\chi''/\chi')$ vs. T^{-1} for 1 ; (d) Energy barrier fits for cluster 2 .			
Figure S7	The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster 2 .			

Experimental Section

Materials and Measurements.

All reagents were obtained from commercial sources and used without further purification. Elemental analyses for C, N, and H were performed on a varia MICRO cube. Infrared spectra were recorded by transmission through KBr pellets containing *ca.* 0.5% of the complexes using a PE Spectrum FT-IR spectrometer (400–4,000 cm⁻¹) (Figure S1). Thermogravimetric analyses (TGA) were conducted in a flow of nitrogen at a heating rate of 5 °C/min using a NETZSCH TG 209 F3 (Figure S2). Powder X-ray diffraction (PXRD) spectra were recorded on a D8 Advance (Bruker) diffractometer at 293 K (Mo-K α). The samples were prepared by crushing crystals and the powder placed on a grooved aluminum plate. Diffraction patterns were recorded from 5° to 55° at a rate of 5° min⁻¹ (Figure S3). Measurements of magnetic susceptibility were carried out within the temperature range of 2–300 K using a Quantum Design MPMS SQUID magnetometer equipped with a 7 T magnet. The diamagnetic corrections for these complexes were estimated using Pascal's constants, and magnetic data were corrected for diamagnetic contributions of the sample holder.

Single-crystal X-ray crystallography.

Diffraction data for the complex were collected on a Bruker SMART CCD diffractometer (Cu-K α radiation and $\lambda = 1.54$ Å) in Φ and ω scan modes. The structures were solved by direct methods, followed by difference Fourier syntheses, and then refined by full-matrix least-squares techniques on F^2 using *SHELXL*^[1]. All other non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed at calculated positions and isotopically refined using a riding model. Table S1 summarizes X-ray crystallographic data and refinement details for the complexes. The CCDC reference numbers are 2217384 and 2217385 for **1** and **2**.

[1] Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

3

Reagents and Medicines

All reagents used in this experiment were of AR grade without further purification. All reagents used include: anhydrous methanol (500 mL, AR), acetonitrile (500 mL, AR), triethylamine (500 mL, AR), Dy(NO₃)₃· Θ H₂O (100 g, AR), 4-(dimethylamino)-2-hydroxybenzaldehyde (25 g, AR), 4-diethylaminosalicylaldehyde (25 g, AR), salicylic hydrazide (50 g, AR).

The synthesis method.

Synthesis of cluster 1 ($[Dy_8(L^1)_4(\mu_3-O)_2(CH_3O)_6(NO_3)_4(CH_3OH)_6(H_2O)_2]\cdot 3CH_3OH\cdot CH_3CN\cdot H_2O$): Add 0.1 mmol (0.0165 g) 4-(dimethylamino)-2-hydroxybenzaldehyde, 0.1 mmol salicylic hydrazide (0.0152 g), 0.2 mmol (0.091 g) Dy(NO_3)_3\cdot 6H_2O, 60 µL triethylamine and 2.5 mL mixed solutions (CH_3OH : CH_3CN = 2 : 0.5) were added in a pyrex tube. In the tube, shake and sonicate for 15 min. Place the sealed pyrex tube in an oven at 80 °C, take it out two days later, slowly cool to room temperature, and precipitate brown lumpy crystals. The yield is about 31.5% (calculated with the amount of Dy(NO_3)_3\cdot 6H_2O). Elemental analysis theoretical value ($C_{78}H_{134}Dy_8O_{20}N_{46}$): C, 28.08%; H, 4.09%; N, 19.31%; experimental value: C, 28.01%; H, 4.03%; N, 19.28%. Infrared spectrum data (IR, KBr pellet, cm⁻¹): 3414(m), 2972(w), 2425(w), 1600(s), 1383(s), 1253(s), 1140(w), 1071(w), 837(w), 758(w), 489(m).

Synthesis of cluster 2 ($[Dy_8(L^2)_4(\mu_3-O)_2(CH_3O)_6(NO_3)_4(CH_3OH)_6(H_2O)_2]\cdot 6CH_3OH\cdot CH_3CN\cdot H_2O$): The procedure was similar to that of cluster **1**, except that the 4-(dimethylamino)-2-hydroxybenzaldehyde was replaced with 4-diethylaminosalicylaldehyde. The yield is about 29% (calculated with the amount of $Dy(NO_3)_3\cdot 6H_2O$). Elemental analysis theoretical value ($C_{96}H_{170}Dy_8N_{18}O_{52}$): C, 31.09%; H, 4.62%; N, 6.79%; experimental value: C, 31.02%; H, 4.59%; N, 6.75%. Infrared spectrum data (IR, KBr pellet, cm⁻¹): 3403(m), 2423(w), 1599(s), 1512(m), 1382(s), 1251(m), 1138(w), 1060(w), 835(w), 756(w), 487(m).

	1	2
Formula	$C_{78}H_{134}Dy_8O_{20}N_{46}$	$C_{96}H_{170}Dy_8N_{18}O_{52}$
Formula weight	3388.04	3648.75
<i>Т,</i> К	100(10)	100(10)
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
<i>a,</i> Å	10.7519(2)	14.1647(4)
<i>b</i> , Å	15.0363(2)	14.3993(3)
<i>c,</i> Å	17.3580(3)	16.7338(4)
α, °	71.4304(13)	82.531(2)
<i>6</i> , °	81.7596(16)	75.286(3)
γ, °	84.3800(14)	82.046(2)
<i>V,</i> Å ³	2628.60 (8)	3253.05(14)
Ζ	1	1
D _c , gcm ^{−3}	2.140	1.863
μ, mm⁻¹	30.67	24.87
F(000)	1638	1780
2ϑ range for data collection/°	6.2 to 149.8	5.4 to 151
Reflns coll.	33758	39484
Unique reflns	10572	13042
R _{int}	0.077	0.0575
Observed data [/>2σ(/)]	9170	11961
N _{par} , N _{ref}	718, 10572	807, 3166
$R_1^{a}(l>2\sigma(l))$	0.086	0.1024
wR_2^{b} (all data)	0.233	0.2811
GOF	1.03	1.10

TableS1.Crystallographic data of clusters 1 and 2.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Figure S1. IR spectra of clusters 1 and 2.

Thermal analysis

The thermal stability tests of clusters **1** and **2** were carried out under a flowing nitrogen atmosphere, and the temperature was slowly increased from 35 °C to 1000 °C at a rate of 5 °C/min. The structures of clusters **1** and **2** are similar, so the thermal stability test results are basically the same. First, when the temperature is gradually increased from 35 °C to 78 °C, the weight loss is 4.42%. This process corresponds to a loss of three CH₃OH molecules, one CH₃CN molecule and one H₂O molecules (theoretical value is 4.57%). When the temperature continues to rise 195 °C, the weight loss is 2.32%. This process corresponds to a loss of two CH₃OH molecules and one H₂O molecule (theoretical value is 2.43%). Finally, the weight loss is 7.81%, when the temperature continues to rise from 195 °C to 350 °C. This process corresponds to a loss of four CH₃OH molecules and two NO₃⁻ ions (theoretical value is 7.91%). When the temperature continues to rise above 350 °C, cluster **1** was decomposed as the temperature continued to rise (Figure S2a). Cluster **2** has a weight loss of 4.98% before 152°C, which corresponds to the loss of five CH₃OH molecules and one H₂O molecule (theoretical 4.88%). Then, the weight loss is 8.62%, when the temperature continues to rise from 152 °C to 360 °C. This process corresponds to a loss of seven CH_3OH molecules, two H_2O molecules and one CH_3CN molecule (theoretical value is 8.68%). When the temperature continues to rise above 360 °C, cluster **2** was decomposed as the temperature continued to rise (Figure S2b).

Figure S2. Thermogravimetric (TG) curves of clusters 1 and 2.

Figure S3. Powder X-ray diffraction patterns (PXRD) of clusters 1 and 2.

Figure S4. Loop curve graph of clusters 1 and 2 at 2 K.

Figure S5. Temperature dependence of the real (χ') and imaginary (χ'') ac susceptibilities at different frequencies in the 0 Oe dc fields for clusters **1** (a) and **2** (b).

Figure S6. (a and b) Cole-Cole for clusters **1** and **2**; (c) Plots of $\ln(\chi''/\chi')$ vs. T^{-1} for **1**; (d) Energy barrier fits for cluster **2**.

Figure S7. The fitting comparison of experimental and theoretical values of mass spectral molecular ion peaks of cluster **2**.

Bond lengths of complex 1 (Å)							
Dy1-05	2.250(6)	Dy2-O29 ⁱ	2.324(6)	Dy3-068	2.479(6)		
Dy1-05 ⁱ	2.281(6)	Dy2-043	2.348(6)	Dy3-060	2.491(7)		
Dy1-054	2.339(6)	Dy2-030	2.376(6)	Dy3-057	2.554(7)		
Dy1-029	2.365(6)	Dy2-N40	2.436(7)	Dy4-05	2.243(5)		
Dy1-043	2.406(6)	Dy3-069	2.555(7)	Dy4-019	2.246(6)		
Dy1-063	2.424(7)	Dy3-061	2.276(6)	Dy4-061	2.289(6)		

 Table S2.
 Selected bond lengths (Å) and angles (°) of cluster 1 and 2.

Dy1-032	2.451(6)	Dy3-06	2.343(6)	Dy4-O54 ⁱ	2.309(6)
Dy1-018	2.530(6)	Dy3-055	2.366(6)	Dy4-O30	2.368(6)
Dy2-044	2.249(6)	Dy3-065	2.402(7)	Dy4-018	2.423(6)
Dy2-05	2.265(6)	Dy3-O30	2.425(6)	Dy4-N15	2.480(7)
Dy2-06	2.314(6)				
		Bond angles of c	omplex 1 (°)		
05-Dy1-05 ⁱ	75.7(2)	O6-Dy2-O43	84.5(2)	O55-Dy3-O57	126.7(2)
05-Dy1-054	124.8(2)	029 ⁱ -Dy2-043	103.5(2)	O6-Dy3-O69	140.1(2)
05 ⁱ -Dy1-054	72.4(2)	O44-Dy2-O30	81.2(2)	O55-Dy3-O69	73.1(2)
05-Dy1-029	119.5(2)	O5-Dy2-O30	76.2(2)	O65-Dy3-O69	67.8(2)
05 ⁱ -Dy1-O29	73.1(2)	O6-Dy2-O30	71.0(2)	O30-Dy3-O69	127.8(2)
O54-Dy1-O29	92.5(2)	029 ⁱ -Dy2-030	96.8(2)	O68-Dy3-O69	51.2(2)
05-Dy1-043	70.8(2)	O6-Dy2-N40	101.0(2)	O60-Dy3-O69	68.3(2)
05 ⁱ -Dy1-O43	98.6(2)	029 ⁱ -Dy2-N40	91.1(2)	O57-Dy3-O69	102.0(2)
O54-Dy1-O43	70.9(2)	O43-Dy2-N40	65.1(2)	O6-Dy3-O55	79.7(2)
O29-Dy1-O43	163.2(2)	O30-Dy2-N40	154.5(2)	O65-Dy3-O57	134.8(2)
05-Dy1-063	146.3(2)	O5-Dy2-N40	129.2(2)	O30-Dy3-O57	130.3(2)
05 ⁱ -Dy1-O63	137.8(2)	O61-Dy3-O6	86.0(2)	O68-Dy3-O57	68.3(2)
O54-Dy1-O63	78.8(2)	O61-Dy3-O55	147.3(2)	O60-Dy3-O57	50.9(2)
O29-Dy1-O63	78.1(2)	O43-Dy2-O30	135.1(2)	O61-Dy3-O69	131.5(2)
O43-Dy1-O63	100.4(2)	O44-Dy2-N40	74.1(2)	O30-Dy4-N15	154.4(2)
05-Dy1-032	80.4(2)	O5-Dy2-O43	71.6(2)	O18-Dy4-N15	64.4(2)
05 ⁱ -Dy1-O32	156.2(2)	O61-Dy3-O65	80.9(2)	O5-Dy4-O19	153.8(2)
O54-Dy1-O32	123.1(2)	O6-Dy3-O65	143.6(2)	O5-Dy4-O61	105.8(2)
O29-Dy1-O32	120.1(2)	O55-Dy3-O65	93.6(2)	019-Dy4-061	86.2(2)
O43-Dy1-O32	73.2(2)	O6-Dy3-O30	69.7(2)	05-Dy4-054 ⁱ	73.6(2)
O63-Dy1-O32	66.0(2)	O55-Dy3-O30	75.2(2)	019-Dy4-054 ⁱ	90.1(2)
05-Dy1-018	68.6(2)	065-Dy3-030	74.1(2)	061-Dy4-054 ⁱ	169.2(2)
05 ⁱ -Dy1-018	100.31(19)	061-Dy3-068	85.1(2)	O5-Dy4-O30	76.8(2)
O54-Dy1-O18	160.3(2)	O6-Dy3-O68	140.1(2)	O19-Dy4-O30	85.0(2)

O29-Dy1-O18	67.82(19)	O55-Dy3-O68	124.0(2)	O61-Dy4-O30	73.2(2)			
O43-Dy1-O18	128.76(19)	O65-Dy3-O68	72.4(2)	054 ⁱ -Dy4-O30	96.3(2)			
O63-Dy1-O18	96.5(2)	O30-Dy3-O68	142.0(2)	O5-Dy4-O18	70.7(2)			
O32-Dy1-O18	70.5(2)	O61-Dy3-O60	125.4(2)	O19-Dy4-O18	134.6(2)			
O44-Dy2-O5	152.6(2)	O6-Dy3-O60	79.0(2)	O61-Dy4-O18	84.1(2)			
O44-Dy2-O6	87.1(2)	O55-Dy3-O60	80.5(2)	054 ⁱ -Dy4-018	105.6(2)			
05-Dy2-06	100.0(2)	O65-Dy3-O60	135.5(2)	O30-Dy4-O18	133.1(2)			
044-Dy2-029 ⁱ	93.4(2)	O30-Dy3-O60	143.0(2)	O5-Dy4-N15	128.5(2)			
05-Dy2-029 ⁱ	74.2(2)	O68-Dy3-O60	75.0(2)	O19-Dy4-N15	72.1(2)			
06-Dy2-029 ⁱ	167.6(2)	O61-Dy3-O57	74.6(2)	O61-Dy4-N15	93.6(2)			
O44-Dy2-O43	135.8(2)	O6-Dy3-O57	71.9(2)	054 ⁱ -Dy4-N15	95.0(2)			
Bond lengths of complex 2 (Å)								
Dy1-O8 ⁱ	2.301(8)	Dy2-O3 ⁱ	2.290(8)	Dy3-015	2.462(9)			
Dy1-08	2.246(9)	Dy2-05	2.393(9)	Dy3-011	2.349(8)			
Dy1-04	2.371(8)	Dy2-07	2.359(9)	Dy3-012	2.389(9)			
Dy1-010	2.491(8)	Dy2-N5	2.463(9)	Dy4-08	2.271(8)			
Dy1-03	2.344(8)	Dy3-O20	2.557(9)	Dy4-O4 ⁱ	2.319(8)			
Dy1-05	2.498(8)	Dy3-014	2.237(9)	Dy4-01	2.257(9)			
Dy1-02	2.419(8)	Dy3-07	2.426(8)	Dy4-014	2.299(8)			
Dy1-09	2.401(9)	Dy3-O13	2.448(9)	Dy4-07	2.401(9)			
Dy2-08	2.239(8)	Dy3-O18	2.494(9)	Dy4-O2	2.364(9)			
Dy2-011	2.298(8)	Dy3-017	2.511(9)	Dy4-N2	2.455(10)			
Dy2-06	2.249(9)							
	Bond angles of complex 2 (°)							
08-Dy1-08 ⁱ	76.4(3)	011-Dy2-07	72.0(3)	07-Dy3-O20	129.6(3)			
08-Dy1-O4	121.5(3)	O11-Dy2-N5	101.4(3)	07-Dy3-013	72.2(3)			
08 ⁱ -Dy1-O4	72.3(3)	O6-Dy2-O11	88.1(3)	07-Dy3-018	146.3(3)			
08-Dy1-010	80.6(3)	06-Dy2-03 ⁱ	92.4(3)	O14-Dy3-O17	88.1(3)			
08 ⁱ -Dy1-O10	156.9(3)	06-Dy2-05	133.5(3)	O14-Dy3-O15	133.5(3)			
08-Dy1-03	122.8(3)	06-Dy2-07	84.2(3)	O18-Dy3-O20	50.7(3)			

08 ⁱ -Dy1-03	72.1(3)	06-Dy2-N5	72.2(3)	07-Dy3-017	142.9(3)
08-Dy1-05	68.9(3)	03 ⁱ -Dy2-011	168.2(3)	07-Dy3-015	125.5(3)
08 ⁱ -Dy1-05	99.0(3)	03 ⁱ -Dy2-05	103.8(3)	013-Dy3-O20	133.2(3)
08 ⁱ -Dy1-O2	101.1(3)	03 ⁱ -Dy2-07	96.3(3)	O13-Dy3-O18	136.2(3)
08-Dy1-02	70.2(3)	O3 ⁱ -Dy2-N5	90.0(3)	013-Dy3-017	73.5(3)
08 ⁱ -Dy1-O9	135.9(3)	O5-Dy2-N5	64.7(3)	O13-Dy3-O15	69.8(3)
08-Dy1-09	147.8(3)	07-Dy2-05	135.1(3)	O15-Dy3-O20	104.9(3)
O4-Dy1-O10	120.2(3)	07-Dy2-N5	155.9(3)	O15-Dy3-O18	68.3(3)
04-Dy1-05	69.0(3)	011-Dy3-012	78.1(3)	O15-Dy3-O17	51.2(3)
04-Dy1-02	163.0(3)	011-Dy3-020	72.7(3)	O8-Dy4-O4 ⁱ	73.8(3)
O4-Dy1-O9	78.0(3)	011-Dy3-07	69.9(3)	08-Dy4-014	105.7(3)
010-Dy1-05	71.1(3)	011-Dy3-013	142.0(3)	08-Dy4-07	75.3(3)
03-Dy1-04	92.2(3)	011-Dy3-018	80.8(3)	O8-Dy4-O2	70.8(3)
03-Dy1-010	123.1(3)	011-Dy3-017	141.2(3)	O8-Dy4-N2	129.8(3)
03-Dy1-05	161.1(3)	011-Dy3-015	138.6(3)	04 ⁱ -Dy4-07	94.6(3)
03-Dy1-02	70.8(3)	012-Dy3-020	126.4(3)	04 ⁱ -Dy4-O2	106.0(3)
03-Dy1-09	77.3(3)	012-Dy3-07	76.7(3)	O4 ⁱ -Dy4-N2	96.1(3)
02-Dy1-010	71.8(3)	012-Dy3-013	96.7(3)	O1-Dy4-O8	150.7(3)
02-Dy1-05	128.0(3)	012-Dy3-018	81.3(3)	O1-Dy4-O4 ⁱ	87.5(3)
09-Dy1-010	67.2(3)	012-Dy3-017	121.2(3)	O1-Dy4-O14	86.7(3)
09-Dy1-05	99.9(3)	012-Dy3-015	70.7(3)	O1-Dy4-O7	84.2(3)
09-Dy1-02	97.9(3)	014-Dy3-011	86.5(3)	O1-Dy4-O2	137.4(3)
08-Dy2-011	100.8(3)	014-Dy3-012	148.1(3)	O1-Dy4-N2	73.5(3)
08-Dy2-06	155.1(3)	014-Dy3-O20	73.4(3)	O14-Dy4-O4 ⁱ	165.1(3)
08-Dy2-03 ⁱ	74.2(3)	014-Dy3-07	71.8(3)	014-Dy4-07	71.2(3)
08-Dy2-05	70.9(3)	014-Dy3-013	78.5(3)	014-Dy4-02	87.5(3)
08-Dy2-07	76.7(3)	014-Dy3-018	123.9(3)	014-Dy4-N2	95.4(3)
08-Dy2-N5	127.3(3)	018-Dy3-017	70.7(3)	07-Dy4-N2	154.7(3)
011-Dy2-05	84.3(3)	017-Dy3-020	68.9(3)	O2-Dy4-O7	132.9(3)
O2-Dy4-N2	65.1(3)				

_

Labol	Shano	Symmetry	Distortion (°)	
Label	Label Snape Symmetry		Dy1 (1)	Dy1 (2)
HP-7	D_{7h}	Heptagon	47.67678	46.41484
HPY-7	C_{6v}	Hexagonal pyramid	35.02654	33.98077
PBPY-7	D_{5h}	Pentagonal bipyramid	27.14682	27.20226
COC-7	C _{3v}	Capped octahedron	28.55928	28.25368
CTPR-7	C_{2v}	Capped trigonal prism	27.44894	27.95044
JPBPY-7	D_{5h}	Johnson pentagonal bipyramid J13	32.28464	32.37441
JETPY-7	C _{3v}	Johnson elongated triangular pyramid J7	33.75690	32.91938

Table S3. SHAPE analysis of the Dy1 in the clusters 1 and 2.

Table S4. SHAPE analysis of the Dy2 in the clusters 1 and 2.

Labol	Shano	Symmetry	Disto	Distortion (°)	
Label	Label Shape Symmetry		Dy2 (1)	Dy2 (2)	
OP-8	D_{8h}	Octagon	44.71560	44.57769	
HPY-8	C _{7v}	Heptagonal pyramid	31.60690	31.41839	
HBPY-8	D_{6h}	Hexagonal bipyramid	29.64515	29.54543	
CU-8	O_{h}	Cube	24.95490	24.79237	
SAPR-8	D_{4d}	Square antiprism	25.30011	25.31050	
TDD-8	D_{2d}	Triangular dodecahedron	23.11296	23.23515	
JGBF-8	D_{2d}	Johnson gyrobifastigium J26	30.31710	30.66463	
JETBPY-8	D_{3h}	Johnson elongated triangular bipyramid J14	37.59994	37.49979	
JBTP-8	<i>C</i> _{2v}	Biaugmented trigonal prism J50	25.08216	25.26054	
BTPR-8	C_{2v}	Biaugmented trigonal prism	25.40354	25.90108	
JSD-8	D_{2d}	Snub dipHenoid J84	26.10376	26.33839	
TT-8	T_{d}	Triakis tetrahedron	23.56992	23.44739	
ETBPY-8	D_{3h}	Elongated trigonal bipyramid	35.36388	36.02676	

Table S5. SHAPE analysis of the Dy3 in the clusters 1 and 2.

Labol	Label Shape Symmetry	Symmetry	Disto	rtion (°)	
Label		Dy3 (1)	Dy3 (2)		
HP-7	D_{7h}	Heptagon	46.43467	47.09985	
HPY-7	C_{6v}	Hexagonal pyramid	34.34694	35.58078	
PBPY-7	D_{5h}	Pentagonal bipyramid	27.37341	27.31557	
COC-7	C_{3v}	Capped octahedron	28.59610	28.78542	
CTPR-7	C_{2v}	Capped trigonal prism	28.16606	27.69416	
JPBPY-7	D_{5h}	Johnson pentagonal bipyramid J13	32.70556	32.44131	
JETPY-7	C _{3v}	Johnson elongated triangular pyramid J7	32.92396	33.76365	

Label	Shana	Symmetry	Disto	rtion (°)
	зпаре	Symmetry	Dy4 (1)	Dy4 (2)
EP-9	D_{9h}	Enneagon	48.25672	43.71009
OPY-9	C_{8v}	Octagonal pyramid	38.01793	35.61322
HBPY-9	D_{7h}	Heptagonal bipyramid	35.17871	34.06055
JTC-9	C _{3v}	Johnson triangular cupola J3	28.54213	23.81293
JCCU-9	C_{4v}	Capped cube J8	28.92568	27.21980
CCU-9	C_{4v}	Spherical-relaxed capped cube	28.33736	27.78523
JCSAPR-9	C_{4v}	Capped square antiprism J10	22.56189	21.20988
CSAPR-9	C_{4v}	Spherical capped square antiprism	22.46010	21.64890
JTCTPR-9	D_{3h}	Tricapped trigonal prism J51	21.11212	20.46027
TCTPR-9	D_{3h}	Spherical tricapped trigonal prism	22.51160	21.90571
JTDIC-9	C _{3v}	Tridiminished icosahedron J63	31.54964	28.27652
HH-9	<i>C</i> _{2v}	Hula-hoop	28.88224	28.13913
MFF-9	Cs	Muffin	22.12765	22.03713

Table S6. SHAPE analysis of the Dy4 in the clusters 1 and 2.

Table S7. Parameters from the fitting result of the Cole-Cole plots for the cluster 1 under 0 Oe field.

	1				
Temp.(K)	τ	α	residual		
2.0	6.42814E-6	0.463	0.0666		
2.3	5.84223E-6	0.42326	0.05574		
2.6	2.52193E-6	0.53267	0.06066		
2.9	2.47095E-6	0.51236	0.04936		
3.2	1.63708E-6	0.55178	0.0461		
3.5	1.03053E-6	0.59284	0.05261		
3.8	6.48952E-7	0.62752	0.04035		
4.1	7.12875E-7	0.6206	0.04059		
4.4	9.72806E-7	0.57349	0.03696		
4.7	1.03708E-6	0.55546	0.02877		
5.0	6.21776E-7	0.61446	0.03936		

Table S8.	Parameters fr	rom the fitting	result of the	Cole-Cole p	plots for the cluster	2 under 0 Oe field.
-----------	---------------	-----------------	---------------	-------------	-----------------------	---------------------

	2		
Temp.(K)	τ	α	residual
2	2.23008E-4	0.18964	0.10006
2.5	1.49185E-4	0.17692	0.07606
3	1.08023E-4	0.17657	0.06318
3.5	8.56003E-5	0.17877	0.04731
4	6.99515E-5	0.1855	0.03796

4.5	6.09243E-5	0.18915	0.03041
5	5.42331E-5	0.19344	0.0261
5.5	4.96142E-5	0.19695	0.02171
6	4.65577E-5	0.19849	0.02018
6.5	4.40635E-5	0.20072	0.01459
7	4.2437E-5	0.19874	0.01541
7.5	4.05654E-5	0.20079	0.01131
8	3.66212E-5	0.20715	0.00891
8.5	3.55635E-5	0.20384	0.00888
9	3.37898E-5	0.20399	0.00797
9.5	3.32683E-5	0.19693	0.00737
10	3.01148E-5	0.1952	0.00602

 Table S9. Selected parameters from the fitting result of the Cole-Cole plots for 1 under 0 Oe fields.

Frequency (Hz)	Δ (K)	τ ₀ (s)
10	2.84788	2.78×10 ⁻²
100	1.45621	3.33×10 ⁻²
300	1.24737	2.35×10 ⁻²
499	1.63634	4.02×10 ⁻³
100	2.40405	4.80×10 ⁻⁴