Supporting Information for

Three Multi-responsive Luminescent Zn-CPs for Detection of Antibiotics/Cations/Anions in Aqueous Media

Chuanbin Fan, ${ }^{\text {a,b }}$ Guimei Huang, ${ }^{\text {a,c }}$ Zhiyong Xing, ${ }^{\text {a,b }}$ Junli Wang, ${ }^{\text {a,b }}$ Yaqin Pang, ${ }^{\text {a,b }}$ Qingping Huang, ${ }^{\text {a,b }}$ Shifu Huang, a,b Ziao Zong, a,b,* Feng Guo, a,b,**

a. School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, P.R. China
b. Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, P.R. China
c. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
*Corresponding author: zongziao@126.com.
**Corresponding author: guofeng1510@yeah.net.

Materials and General Characteristics

The used materials of this work were of AR grade and purchased from commercial sources without further purification. The experimental powder X-ray diffraction (PXRD) of YMUN 6-8 samples were collected on a Rigaku Miniflex 600 instrument. A Nicolet 170SX spectrometer was employed to record the infrared (IR) spectra with KBr pellets, and the measurements were in the range of $4000-400 \mathrm{~cm}^{-1}$. We used the Perkin-Elmer TG-7 thermogravimetric analyzer to conduct thermogravimetric analysis (TGA) under nitrogen condition, and the heating rate was $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ from 30 to $800^{\circ} \mathrm{C}$. A Shimadzu UV-2550 spectrophotometer was used to obtain the UV-vis spectra. Luminescence spectra were collected on a Perkin Elmer LS55 spectrophotometer.

Figure S1. View of the noncovalent supramolecular interactions in YMUN 6. The weak interactions in the neighboring A and B segments by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions (the distance of $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and the angle of $\angle \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ are listed in Table S2).

Figure S2. View of the noncovalent supramolecular interactions in YMUN 7. The neighboring 2D three-fold interpenetrated structures are interlined by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (the distance of $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and the angle of $\angle \mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ are listed in Table S2).

Figure S3. View of the noncovalent supramolecular interactions in YMUN 8. The neighboring 2D three-fold interpenetrated structures are interlined by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (the distance of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and the angle of $\angle \mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ are listed in Table S2).

Figure S4. PXRD patterns of YMUN 6, simulated and as-synthesized.

Figure S5. PXRD patterns of YMUN 7, simulated and as-synthesized.

Figure S6. PXRD patterns of YMUN 8, simulated and as-synthesized.

Figure S7. The TG curves of YMUN 6-8

Figure S8. Photoluminescence of $\mathrm{H}_{2} \mathrm{~L}$ ligand and YMUN 6-8 at room temperature in the solid state.

Figure S9. (A)-(C) Fluorescence spectra of YMUN 6 powder and YMUN 6 powder introduced into different antibiotics $(0.5 \mathrm{mM})$, metal ions $(1.0 \mathrm{mM})$, and cations $(1.0 \mathrm{mM})$ in the aqueous solution at room temperature ($\lambda_{\mathrm{ex}}=275 \mathrm{~nm}$). (E)-(G) Fluorescence spectra of YMUN 7 powder and YMUN 7 powder introduced into different antibiotics (0.5 mM), metal ions (1.0 mM), and cations (1.0 mM) in the aqueous solution at room temperature ($\lambda_{\mathrm{ex}}=271$ $\mathrm{nm})$. (G)-(I) Fluorescence spectra of YMUN 8 powder and YMUN 8 powder introduced into different antibiotics $(0.5 \mathrm{mM})$, metal ions (1.0 mM), and cations (1.0 mM) in the aqueous solution at room temperature $\left(\lambda_{\mathrm{ex}}=275 \mathrm{~nm}\right)$.

Figure S10. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of YMUN 6 after adding Ag^{+}solution.

Figure S11. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of YMUN 7 after adding Ag^{+}solution.

Figure S12. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of
YMUN 8 after adding Ag^{+}solution.

Figure S13. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of YMUN 6 after adding $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ solution.

Figure S14. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of YMUN 7 after adding $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ solution.

Figure S15. The fluorescence intensity trend spectra and the $S-V$ linear relationship curve of YMUN 8 after adding $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ solution.

Figure S16. The fluorescence spectra of YMUN 6 in various antibiotics (0.5 mM) (Black lines), and adding equivalent $\mathbf{C h l}$ in various antibiotics solution.

Figure S17. The fluorescence spectra of YMUN 6 in various metal ions (1.0 mM) (Black lines), and adding equivalent Ag^{+}in various metal ions solution.

Figure S18. The fluorescence spectra of YMUN 6 in various anions (1.0 mM) (Black lines), and adding equivalent $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in various anions solution.

Figure S19. The recycling fluorescence intensity of YMUN 6 for $\mathbf{C h l}$ antibiotic, Ag^{+}ion, and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion, respectively, after four times.

Figure S20. The comparison of PXRD patterns for YMUN 6 after Chl antibiotic, Ag^{+},

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \text { ions sensing. }
$$

Figure S21. The UV-vis spectra of $\mathbf{C h l}$ antibiotic/ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion in aqueous solutions and the excitation spectrum of YMUN 6.

Table S1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for YMUN 6-8.
YMUN 6

$\mathrm{Zn} 1-\mathrm{O} 2$	1.968 (2)	$\mathrm{Zn} 2-\mathrm{O} 8^{\text {iii }}$	1.956 (2)
$\mathrm{Zn} 1-\mathrm{O} 6^{\text {i }}$	1.956 (2)	Zn2-O11	1.931 (2)
$\mathrm{Zn} 1-\mathrm{N} 4{ }^{\text {ii }}$	2.022 (3)	$\mathrm{Zn} 2-\mathrm{N} 8^{\text {iv }}$	2.033 (3)
$\mathrm{Zn} 1-\mathrm{N} 1$	2.004 (3)	Zn2-N5	2.023 (3)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 4{ }^{\text {ii }}$	91.51 (11)	O6i-Zn1-N1	98.39 (11)
$\mathrm{O} 2-\mathrm{Zn} 1-\mathrm{N} 1$	107.74 (11)	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 4{ }^{\text {ii }}$	124.10 (12)
O6i-Zn1-O2	117.63 (10)	$\mathrm{O} 8^{\text {iii }}-\mathrm{Zn} 2-\mathrm{N} 8^{\text {iv }}$	115.24 (11)

O6 ${ }^{\text {i }} \mathrm{Zn} 1-\mathrm{N} 4^{\text {ii }}$	118.40 (11)	O8iii-Zn2-N5	91.15 (11)
O11-Zn2-O8 ${ }^{\text {iii }}$	122.29 (11)	C1-O2-Zn1	120.1 (2)
O11-Zn2-N8 ${ }^{\text {iv }}$	95.87 (11)	$\mathrm{C} 47-\mathrm{O} 8-\mathrm{Zn} 2 \mathrm{iii}$	115.4 (2)
O11-Zn2-N5	114.58 (11)	C66-O11-Zn2	122.4 (2)
N5-Zn2-N8 ${ }^{\text {iv }}$	119.90 (12)	C20-O6-Zn1 ${ }^{\text {i }}$	113.9 (2)
C87-N8-Zn2 ${ }^{\text {ii }}$	135.7 (2)	C46-N4-Zn1 ${ }^{\text {iv }}$	133.8 (2)
C86-N8-Zn2 ${ }^{\text {ii }}$	117.6 (2)	$\mathrm{C} 40-\mathrm{N} 4-\mathrm{Zn} 1^{\text {iv }}$	118.9 (2)
C21-N1-Zn1	137.2 (2)	C67-N5-Zn2	117.6 (2)
C27-N1—Zn1	116.9 (2)	C68-N5-Zn2	130.2 (2)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y-1, z-1$; (iii) $-x+1,-y+1,-z+1$; (iv) $x, y+1, z+1$.

YMUN 7			
$\mathrm{Zn} 2-\mathrm{O} 5^{\text {i }}$	1.977 (2)	$\mathrm{Zn} 1-\mathrm{O} 1^{\text {iv }}$	1.961 (2)
Zn2-O5	1.977 (2)	Zn1-O1	1.961 (2)
$\mathrm{Zn} 2-\mathrm{N} 4{ }^{\text {ii }}$	2.026 (2)	$\mathrm{Zn} 1-\mathrm{N} 1^{\text {iv }}$	2.012 (3)
$\mathrm{Zn} 2-\mathrm{N} 4^{\text {iii }}$	2.026 (2)	Zn1-N1	2.012 (3)
O5i- $\mathrm{Zn} 2-\mathrm{O} 5$	115.21 (14)	$\mathrm{N} 4{ }^{\text {iii }} \mathrm{Zn} 2-\mathrm{N} 4{ }^{\text {iii }}$	108.02 (14)
$\mathrm{O} 5 \mathrm{i}-\mathrm{Zn} 2-\mathrm{N} 44^{\mathrm{iii}}$	$118.02 \text { (10) }$	$\mathrm{Ol}^{\mathrm{iv}}-\mathrm{Zn} 1-\mathrm{O} 1$	$119.21 \text { (14) }$
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Zn} 2-\mathrm{N} 4{ }^{\text {ii }}$	99.20 (9)	$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Zn} 1-\mathrm{N} 1^{\text {iv }}$	102.48 (10)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{N} 4{ }^{\mathrm{ii}}$	118.02 (10)	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{iv}}$	108.57 (10)
$\mathrm{O} 5-\mathrm{Zn} 2-\mathrm{N} 4{ }^{\mathrm{iii}}$	$99.20 \text { (9) }$	$\mathrm{O}^{\mathrm{iv}}-\mathrm{Zn} 1-\mathrm{N} 1$	$108.57 \text { (10) }$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$102.48 \text { (10) }$	$\mathrm{N} 1^{\mathrm{iv}}-\mathrm{Zn} 1-\mathrm{N} 1$	$116.23(15)$
N1 ${ }^{\text {iv }}$-Zn1-N1	116.23 (15)	C21-O5-Zn2	$110.49 \text { (19) }$
$\mathrm{C} 21-\mathrm{O} 5-\mathrm{Zn} 2$	$110.49 \text { (19) }$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	$112.8(2)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	102.48 (10)	C35-N4-Zn2 ${ }^{\text {v }}$	$129.1 \text { (2) }$
C24-N1-Zn1	132.5 (2)	C22-N1-Zn1	121.6 (2)

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $-x+1, y-3,-z+3 / 2$; (iii) $x, y-3, z$; (iv) $-x+2, y,-$ $z+3 / 2$; (v) $x, y+3, z$.

YMUN 8			
$\mathrm{Zn} 1-\mathrm{O} 3$	1.952 (2)	$\mathrm{Zn} 1-\mathrm{N} 1$	2.030 (3)
$\mathrm{Zn} 1-\mathrm{O} 7^{\mathrm{i}}$	1.974 (2)	$\mathrm{Zn} 1-\mathrm{N} 4{ }^{\text {ii }}$	2.048 (3)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{O} 7{ }^{\text {i }}$	113.32 (11)	O7-Zn1—N1	95.75 (11)
$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	137.25 (12)	O7- ${ }^{\text {i }} \mathrm{Zn} 1-\mathrm{N} 4{ }^{\text {ii }}$	93.57 (11)

$\mathrm{O} 3-\mathrm{Zn} 1 — \mathrm{~N} 4^{\mathrm{ii}}$	$106.48(11)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 4^{\mathrm{ii}}$	$101.99(12)$
$\mathrm{C} 19-\mathrm{O} 3-\mathrm{Zn} 1$	$104.9(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	$117.6(3)$
$\mathrm{C} 38-\mathrm{O} 7-\mathrm{Zn} 1^{\mathrm{i}}$	$120.6(2)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Zn} 1$	$136.4(2)$
$\mathrm{C} 18-\mathrm{N} 4-\mathrm{Zn}^{\mathrm{iii}}$	$122.2(2)$	$\mathrm{C} 17-\mathrm{N} 4-\mathrm{Zn} 1^{\mathrm{iii}}$	$132.6(3)$

Symmetry codes: (i) $-x+2,-y+2,-z+1$; (ii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x-1 / 2,-y+1 / 2, z-1 / 2$.

Table S2 Hydrogen bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of YMUN 6-8

D-H $\cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \cdots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$	$\angle \mathrm{DHA}$
		YMUN 6		
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 7$	0.95	2.54	$3.441(4)$	159
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 12$	0.95	2.27	$3.080(5)$	143
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{O} 7$	0.95	2.32	$3.149(4)$	145
C42-H42 $\cdots \mathrm{O} 10$	0.95	2.33	$3.141(5)$	143
C45-H45 $\cdots \mathrm{O} 5$	0.95	2.54	$2.932(6)$	105
$\mathrm{C} 70-\mathrm{H} 70 \cdots \mathrm{O} 4$	0.95	2.37	$3.308(5)$	171
C82-H82 $\cdots \mathrm{O} 6$	0.95	2.46	$3.099(5)$	124
$\mathrm{C} 86-\mathrm{H} 86 \cdots \mathrm{O} 1$	0.95	2.33	$3.134(4)$	142
C86-H86 $\cdots \mathrm{O} 7$	0.95	2.49	$3.113(5)$	123
		YMUN 7		
C25-H25A $\cdots \mathrm{O} 2$	0.99	2.47	$3.061(4)$	117
C32-H32B $\cdots \mathrm{O} 6$	0.99	2.53	$3.009(4)$	109
		YMUN 8		
C1-H1 $\cdots \mathrm{O} 6$	0.95	2.43	$3.226(5)$	141
C13-H13 $\cdots \mathrm{O} 6$	0.95	2.20	$3.153(4)$	178

