Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

Supporting information

Synthesis, Crystal Structure of Fe[SeO₄]OH and Prediction of Polytypes in the extended *R*[*M*O₄]*Z* Family

Alla Arakcheeva, *a,b Noémie Maamouri, a Wen Hua Bi, Benoît Truc, and Arnaud Magrez a

^a Ecole Polytechnique Fédérale de Lausanne, SB, IPHYS, Crystal Growth Facility, Lausanne 1015, Switzerland. E-mail: <u>alla.arakcheeva@epfl.ch</u>, <u>arnaud.magrez@epfl.ch</u>

^b Phase Solutions Co Ltd, ch. des Mesanges 7, Lausanne 1012, Switzerland.

^c Ecole Polytechnique Fédérale de Lausanne, SB, IPHYS, Laboratory for Ultrafast Microscopy and Electron Scattering, Lausanne 1015, Switzerland

Corresponding email: alla.arakcheeva@epfl.ch

Table of Contents:

Polytypes generation using superspace approach. Input files for JANA2006 software
Sketch of structures formed by L_{ss} -layers, similar to Fe[MO_4]OH, ($M = S, Se$)4
Detailed characteristics of atomic positions for compounds, which can be assigned to the 1M polytype. Comparison of predicted and experimental data
Detailed characteristics of atomic positions for compounds, which can be assigned to the 10 polytype

.m40

Figure S1. Input files used with the JANA2006 software³² to generate Fe[MO4]OH (M = S, Se) polytypes from the average structure. Variable parameters, γ in the modulation vector $\mathbf{q} = \gamma \mathbf{c}^*$, t_0 -cut in the x_4 axis, and occupancy parameter τ , are shown by red arrows. Note that parameter τ equal to Δx_4 is the JANA2006 software.

Figure S2. Sketch of structures formed by *L*-layers, similar to $Fe[MO_4]OH$ (M = S, Se). Panel (**a**): β -V[SO_4]O,^{16} Y[SO_4]F^{25} and V[HPO_4]O³⁰ structure types with the space group *Pnam* can be attributed to **10** (m,...) polytype. Panel (**b**): structure types Fe^{III}[SO_4]F,^{21,22} CaCrF₅ (= Ca[CrF_4]F),^{23,24} and Al[SO_4]OH²⁰ with space group *C*2/*c* can be identified with **1M** ($\overline{1}$,...) polytype. Panel (**c**): the kieserite structure type with the general formula $R^{II}[MO_4]H_2O$ (R = Mg, Fe, Ni, Co, Mn, Zn; M = S, Se, As) can also be assigned to **1M** polytype, since H₂O molecules are at least and deform the structure, but do not change the space group and atomic sites of this polytype. The symmetry elements are sown in terms internationally accepted by IUCr.

Table S1. Experimental atomic parameters for $R[MO_4]Z$ in comparison to the predicted for the **1M** polytype (Space group C2/c; $a \approx c \approx 7.5 \pm 0.3$ Å, $b \approx 7.2 \pm 0.2$ Å, $\beta \approx 120.0^{\circ}$). Wyckoff symbol, coordinates and site symmetry indicated in square brackets for the *R*, *M*, *Z* and O sites.

Compound		3D	Reference			
	$ \begin{array}{c} R \\ [4a (0 \ 0 \ 0); \ \overline{1}] \end{array} $	$\begin{bmatrix} M \\ [4e (0 y \frac{1}{4}); 2] \end{bmatrix}$	$\begin{bmatrix} Z \\ [4e (0 y \frac{1}{4}); 2] \end{bmatrix}$	O [8f (x, y, z); 1]	structure type	
<i>R</i> [<i>M</i> O ₄] <i>Z</i> Predicted	R	<i>M</i> y = 0.616	Z y = 0.095	O1: 0, 0.733, 0.0840 O2: 0.683, 0, 0.842	1M polytype (kieserite- like)	Present work
Fe(SeO ₄)(OH)	Fe ^{III}	Se^{VI} $y = 0.613$	О _{ОН} y = 0.091	O1: 0, 0.736, 0.0645 O2: 0.693, 0.025, 0.8382	1M polytype (kieserite- like)	Present work
Fe(SO ₄)(OH)	Fe ^m	S^{VI} y = 0.615	$\begin{array}{c} O_{OH} \\ y = 0.097 \end{array}$	O1: -0.010, 0.736, 0.0817 O2: 0.684, 0.008, 0.8460	Fe(SO ₄)(OH) (kieserite- like)	[14]
Fe(SO ₄)H ₂ O	Fe ^{II}	S^{VI} y = 0.653	$\begin{array}{c} O_{H2O} \\ y = 0.144 \end{array}$	O1: 0.096, 0.768, 0.156 O2: 0.670, -0.044 0.8985	Mg(SO ₄)H ₂ O (kieserite)	[8]
Ni(SeO ₄)H ₂ O	Ni ^{II}	Se^{VI} y = 0.662	O_{H2O} : y = 0.127	O1: 0.112, 0.781, 0.150 O2: 0.685, -0.047, 0.922	Mg(SO ₄)H ₂ O (kieserite)	[12, 13]
Fe(SeO ₄)H ₂ O (simulated)	Fe ^{II}	Se^{VI} y = 0.665	$\begin{array}{c} O_{H2O} \\ y = 0.135 \end{array}$	O1: 0.118, 0.777, 0.153 O2: 0.682, -0.047, 0.912	Mg(SO ₄)H ₂ O (kieserite)	[11]
Al(SO ₄)(OH)	Al ^m	S^{VI} y = 0.623	O_{OH} y = 0.086	O1: 0.004, 0.743, 0.0800 O2: 0.688, 0.003, 0.8465	Al(SO ₄)(OH) (kieserite- like)	[20]
Fe(SO ₄)F	Fe ^{III}	S^{VI} y = 0.603	F = 0.083	O1: -0.004, 0.734, 0.0840 O2: 0.684, 0.014, 0.8460	Fe(SO ₄)F (kieserite- like)	[21,22]
V(PO ₄)F	VIV		F = 0.082	O1: -0.006, 0.746, 0.0750 O2: 0.701, -0.002, 0.8460	Fe(SO ₄)F (kieserite- like)	[22]
Sb(PO ₄)O	Sbv		O y = 0.089	01: 0.088, 0.775, 0.1250 02: 0.685, -0.056, 0.9010	CaCrF ₅ (= Ca(CrF ₄)F (kieserite- like)	[23,24]

Table S2. Experimental atomic parameters for $R[MO_4]Z$ for the **10** polytype (Space group *Pnma*; $a \approx 7.5 \pm 0.3$ Å, $b = 0.5a\sqrt{3} \approx 6.5 \pm 0.3$ Å, $c \approx 7.2 \pm 0.2$ Å). Wyckoff symbol, coordinates and site symmetry indicated in square brackets for the *R*, *M*, *Z* and O sites.

Compound	Variable positional parameters of atoms					Refe-
_		Structure	rence			
	R	М	Z	0	type	
	$[4c (x, \frac{1}{4}, z); m.]$	$[4c (x, \frac{1}{4}, z); m.]$	$[4c(x, \frac{1}{4}, z); m.]$	O1: [8d (x, y, z);1]		
				O3: $[4c (x, \frac{1}{4}, z); m.]$		
				O4: $[4c (x, \frac{1}{4}, z); m.]$		
V(SO ₄)O	VIV	Svi	0	01: 0.375, 0.563, 0.243	β-VO(SO ₄)	[16]
Pauflerite	x=0.335, z=0.267	x=0.123, z=0.868	x=0.626, z=0.168	O3: x=0.955, z=-0.019	(pauflerite)	
				O4: x=0.284, z= -0.010	· ·	
Fe(SO ₄)(OH)	Fem	SVI	O _{OH}	O1: 0.375, 0.567, 0.25	β -VO(SO ₄)	[15]
	x=0.375, z=0.25	x=0.125, z=0.866	x=0.625, z=0.155	O3: x=0.959, z=-0.017	(pauflerite)	
				O4: x=0.291, z= -0.017	-	
$Y(SO_4)F$	YIII	SVI	F	O1: 0.439, 0.582, 0.173	$Y(SO_4)F$	[25]
	x=0.445 z=0.152	x=0.093, z=0.814	x=0.706, z=0.200	O3: x=0.980, z=-0.013	(pauflerite-	
				O4: x=0.259, z= -0.118	like)	
V(HPO ₄)O	VIV	Pv	0	01: 0.373, 0.560, 0.235	β-VO(SO ₄)	[30]
	x=0.333, z=0.265	x=0.123, z=0.875	x=0.633, z=0.160	O3: x=0.955, z=-0.001	(pauflerite)	
				O4: x=0.291, z= -0.007		