Supporting Information

Seeded Growth of Gold-based Nanoscale Homojunctions *via* Controlled Etching-Regrowth and Their Applications for Methanol Oxidation Reaction

Quansen Wu,^a Gongguo Zhang,^b Yingying Wang,^{c*} Yaqi Jiao,^b Yanyun Ma,^d and Yiqun Zheng^{b*}

^a School of Engineering, Jining University, Qufu, Shandong 273155, China

^b School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong

273155, China

^cHealth Management Department, Shandong Vocational College of Light Industry, Zibo, 255300, P. R. China

^d Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, China

* Corresponding authors: Prof. Dr. Y. Zheng, E-mail: <u>whzyq@163.com</u>; Prof. Dr. Y. Wang, *E-mail*: hxwyy2005@mail.sdu.edu.cn

Figure S1. Morphology and structural characterizations of Pt/Ag doped TOH Au seeds: a) TEM;b) HAADF-STEM; c-f) EDX-STEM: c) Au+Pt+Ag, d) Ag, e) Pt, f) Au.

Figure S2. High-resolution XPS spectra of a) TOH Au seeds and b-d) Pt/Ag doped TOH Au seeds:

a, b) Au 4f; c) Pt 4f; d) Ag 3d.

Figure S3. XRD patterns of TOH Au seeds and Pt/Ag doped TOH Au seeds.

Figure S4. HRTEM image of the interface region of an individual Au-based NHJ.

Figure S5. a) XRD patterns and b-d) high resolution XPS spectra of Au-based NHJs: b) Au 4f, c) Pt 4f, and d) Ag 3d.

Figure S6. Morphology and structural characterizations of products shown in Figure 4d: a) TEM;b) HRTEM; c) SAED; d) HAADF-STEM; e-h) EDX-STEM: e) Au+Pt+Ag, f) Au, g) Pt, h) Au.

Figure S7. UV-vis extinction spectra of Au-based products obtained via the standard procedure, except for the use of 10-nm Au seeds stock solution at different volumes.

Figure S8. CV traces of a) TOH Au NPs/C and b) Au-based NHJs/C recorded in 0.5 M KOH+1 M methanol under different scan rates.

Figure S9. Histograms showing the MOR data of a) ECSA and b) specific activity, which were collected *via* multiple parallel tests under the same measurement conditions as described in the experimental section.

Sampla	Diffraction Peak Position				
Sample	(111)	(200)	(220)	(311)	(222)
TOH Au seeds	38.2	44.4	64.6	77.6	81.5
Pt/Ag doped TOH Au seeds	38.3	44.4	64.7	77.8	/
Au-based NHJs	38.3	44.5	64.8	77.7	81.9
Au (JCPDS No. 04-0784)	38.2	44.4	64.6	77.5	81.7
Pt (JCPDS No. 04-0802)	39.8	46.2	67.5	81.3	85.7
Ag (JCPDS No. 04-0783)	38.1	44.3	64.4	77.5	81.5

 Table S1. XRD peak positions of TOH Au seeds, Pt/Ag doped TOH Au seeds, Au-based NHJs.

Sample	volume of Au	Ра	urt I	Part II		
	seeds (µL)	d (nm)	σ (nm)	d (nm)	σ (nm)	
Figure 4a	10	90.8	20.6	65.4	13.4	
Figure 2	20	79.7	28.4	58.7	21.4	
Figure 4b	50	67.8	27.2	44.9	15.3	
Figure 4c	100	58.2	8.2	30.8	7.5	

Table S2. Statistical size information of Au-based NHJs obtained using different amounts of 10-nm Au seeds.

Sample	LSPR Pe	eak Position
Au-based NHJs (10 µL)	676 nm	497 nm
Au-based NHJs (20 µL)	654 nm	486 nm
Au-based NHJs (50 µL)	63	7 nm
Au-based NHJs (100 µL)	61	4 nm

Table S3. LSPR peak positions of Au-based NHJs with different sizes.

Electrocatalyst	E _s * (mV)	E _p * (mV)	ECSA (m ² g ⁻¹)	Specific Activity (A m ⁻²)	<i>j</i> (t=3000s) (A m ⁻²)
TOH Au NPs	479	1280	1.09	7.42	0.10
Au-based NHJs	435	825	0.500	51.4	21.7

 Table S4. Summary of MOR electrocatalytic performance for Au-based electrocatalysts in the

 present study.

 E_s =onset potential vs. RHE; E_p =peak potential vs. RHE.

Flootroootalyst	Flootvoluto	Scan	Electrochemical	Def
	Liectrolyte	Rate Activity		Kel.
Trisoctahedron Au nanocrystals	0.5 M KOH+1 M CH ₃ OH	20 mV s ⁻¹	0.139 mA cm ⁻²	1
Au micromeshes/PDMS	0.5 M KOH+1 M CH ₃ OH	20 mV s ⁻¹	0.264 mA cm ⁻²	2
Dendritic Au	0.1 M KOH+1 M CH ₃ OH	10 mV s ⁻¹	0.095 mA cm ⁻²	3
Nanoporous Au	0.5 M KOH+1 M CH ₃ OH	20 mV s ⁻¹	0.088 mA cm^{-2}	4
Dendritic Au	0.1 M KOH+2 M CH ₃ OH	10 mV s ⁻¹	0.056 mA cm ⁻²	5
Dealloyed nanosponge Au particles	0.5 M KOH+1 M CH ₃ OH	5 mV s ⁻¹	0.182 mA cm ⁻²	6
Au-based NHJs	0.5 M KOH+1 M CH ₃ OH	20 mV s ⁻¹	5.14 mA cm ⁻²	current work

Table S5. Comparison of MOR electrocatalytic performance of Au-based electrocatalysts among recent studies.

References

- Y. Song, T. Miao, P. Zhang, C. Bi, H. Xia, D. Wang and X. Tao, *Nanoscale*, 2015, 7, 8405-8415.
- J. Sun, F. Wang, Y. Liu, Y. Ni, H. Zhou, C. F. Guo and S. Chen, *RSC Adv.*, 2017, 7, 22479-22484.
- 3. X. Han, D. Wang, J. Huang, D. Liu and T. You, J. Colloid Interf. Sci., 2011, 354, 577-584.
- 4. J. Zhang, P. Liu, H. Ma and Y. Ding, J. Phys. Chem. C, 2007, 111, 10382-10388.
- 5. T. Huang, F. Meng and L. Qi, *Langmuir*, 2010, **26**, 7582-7589.
- 6. G. G. Li, Y. Lin and H. Wang, Nano Lett., 2016, 16, 7248-7253.